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Abstract—In this paper we discuss the design and implementation of
AccessMiner, a system-centric behavioral malware detector. Our system
is designed to model the general interactions between benign programs
and the underlying operating system (OS). In this way, AccessMiner
is able to capture which, and how, OS resources are used by normal
applications and detect anomalous behavior in real-time.

The advantage of our approach is that it does not require to be trained
on malicious samples, and therefore it is able to provide a general
detection solution that can be used to protect against both known and
unknown malware. To make the system more resilient against tampering
from sophisticated attackers, AccessMiner is implemented as a custom
hypervisor that sits below the operating system. In this paper we discuss
the implementation details and the technical solutions we adopted to
optimize the performances and reduce the impact of the system.

Our experiments show that in a stable environment AccessMiner can
provide a high level of protection (around 90% detection rate with zero
false positives) with an acceptable overhead - similar to the one that can
be experienced in a state of the art virtual machine environment.
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1 INTRODUCTION

The problem of detecting attacks and malicious applications
at the host level has been largely studied by both the research
and the industrial communities. The most common solutions
are based either on matching static signatures or on using
behavioral models to specify allowed or forbidden behaviors.
Signatures work well to identify single malware instance but
they quickly become ineffective when the attacker adopts
obfuscated or polymorphic code. At the same time, most
behavior-based detection techniques follow a program-centric
approach that focuses on modeling the execution of individual
programs. These models often lack the context to capture
how generic benign and malicious programs interact with
their environment and with the underlying operating system.
As a result, detectors based on program-centric behavioral
techniques tend to raise alerts whenever a new program is
encountered or an existing program is used in a different way.
This typically leads to unacceptably high false positive rates—
thus limiting the practical applicability of these approaches.

AccessMiner [Lanzi et al., 2010] introduced a novel system-
centric technique to model the activity of benign programs.
The main idea behind the AccessMiner approach is that, given
enough training, it is possible to identify common patterns in
the way benign applications interact with the operating system
resources. For instance, while normal programs typically write
only to their own directories (and to temporary directories),
malware often attempt to tamper with other applications and
critical system settings, often residing outside the normal
application “scope”. As a result, special access activity mod-
els can be derived by AccessMiner only by looking at the
execution of a broad set of benign applications. Therefore,
traces of malware execution, often problematic to collect from
a coverage and diversity point of view, are not required to train
our classifiers.

While our experiments showed that a system-centric ap-
proach was successful in identifying a large amount of diverse
malware samples with very few false positives, a number of
important points were not addressed in the original paper. In
particular, the original approach was designed to be imple-
mented as part of the Windows operating system kernel. How-
ever, the threat scenario rapidly changed in the last years with
the creation of new attacks techniques (i.e. Rootkits) which
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aim is to protect user-space malware from detection models
and disable security mechanisms (i.e. Reference Monitors).
Rootkits has always been shipped with two main components:
a kernel-level component and user-space component. The goal
of the former is to disable security mechanism and hide
information from the system, while the aim of the second is to
perform malicious actions. Both components are essential for
successful, simple and general attack design. Moreover the rise
of targeted attacks also poses new challenges that are not fully
addressed by current methodologies. For example, by carefully
combining a mix of social engineering, zero days exploits for
unknown Windows vulnerabilities, and stolen certificates to
sign kernel modules - motivated and well-funded attackers
can quickly subvert the target OS and remain undetected
for long period of times (as the Stuxnet [Symantec, 2011b],
Duqu [Symantec, 2011a], and Flame [Symantec, 2012] inci-
dents have shown).

Since a successful targeted attack could easily tamper with
OS-based detection mechanisms, in this paper we re-design
AccessMiner and we describe how the same approach can
be implemented as a custom hypervisor. This new solution
makes the detector much more resilient to sophisticated attacks
(Rootkits that tries to disable the Reference Monitors), but
it also introduces several technical problems and challenges.
First, in order to collect the same information and monitor
the system calls issued by each process, a hypervisor has to
solve the so-called semantic gap and it has to provide a trusted
path related to the system call invocation. Even though many
solutions exists for this problem, current hypervisor-based de-
tection countermeasures do not scale well to several scenarios
(e.g., critical infrastructures), due to their high computational
requirements that conflict with the strict timing constraints of
the running applications. The challenge here is to use a light-
weight approach that does not impact the performance of the
system in a prohibitive way.

To summarize, the new contributions of this paper are the
following:

• We extend and complement the original AccessMiner
paper by presenting a real implementation as a custom
hypervisor. In particular we design a system that protect
itself from sophisticated attacks techniques (i.e. Rootkits)
and provide at the same time a trusted path for the system
call invocation as a main source of information for our
detection system. We describe the problems we had to
face and the solutions we developed to adapt the original
algorithm to this setup.

• We extensively tested the new detector, in particular to
show to which extent it affects the performance of the
system. Our experiments show that the high protection
provided by AccessMiner can be obtained at the price
that is normally paid by running a system inside a state-
of-the-art virtual environment, such as the ones normally
adopted in the cloud.

Fig. 1. Creation of System-centric models.

2 SYSTEM-CENTRIC MODELS AND DETEC-
TION

Several studies [Lanzi et al., 2010], [Canali et al., 2012]
have shown that models based on system call sequences (n-
grams) have difficulties in distinguishing normal and malicious
behaviors. One of the main problems is that while n-grams
might capture well the execution of individual programs, they
poorly generalize to other applications. The reason is that
the model is closely tied to the execution(s) of particular
applications; we refer to this as a program-centric detection
approach.

In this section, we propose a model that attempts to abstract
from individual program runs and that generalizes how benign
programs generally interact with the operating system. For
capturing these interactions, we focus on the file system and
the registry activity of Microsoft Windows processes. More
precisely, we record the files and the registry entries that
Windows processes read, write, and execute (in case of files
only).

Our model is based on a large number of runs of a diverse
set of applications, and it combines the observations into a
single model that reflects the activities of all programs that
are observed. For this to work, we leverage the fact that
we see “convergence.” That is, even when we build a model
from a subset of the observed processes, the activity of the
remaining processes fits this model very well. Thus, by looking
at program activity from a system-centric view – that is, by
analyzing how benign programs interact with the OS – we can
build a model that captures well the activity of these programs.
Of course, this would not be sufficient by itself. To be useful,
our model must also be able to identify a reasonably large
fraction of malware. To demonstrate that this is indeed the
case, we have performed a number of experiments that are
described in more detail in Section 5.

Figure 1 captures the creation of the access activity model.
All the steps that are required for the creation are explained
in the following of this section.

2.1 Creating Access Activity Models
To capture normal (benign) interactions with the file system
and the Windows registry, we propose the creation of access



3

activity models. An access activity model specifies a set of
labels for operating system resources. In our case, the OS
resources are directories in the file system and sub-keys in the
registry (sub-keys are the equivalent of directories in the file
system). For simplicity, in the following we refer to directories
and sub-keys as “folders”.

Note that we do not specify labels directly on files or
registry entries. The reason for this was that the resulting
models are significantly smaller when looking at folders
only. As a result, the model generation process is faster and
“converges” quicker (i.e., less training data is required to build
stable models). Moreover, in almost all cases, the labels for
the folder entries (files or registry keys) would be similar to
the label for that folder itself. Thus, the sacrifice in precision
is minimal.

A label L is a set of access tokens {t0, t1, . . . , tn}. Each
token t is a pair 〈a, op〉. The first component a represents
the application that has performed the access, the second
component op represents the operation itself (that is, the type
of access).

In our current system, we refer to applications by name. In
principle, this could be exploited by a malware process that
decides to reuse the name of an existing application (that has
certain privileges). In the future, we could replace application
names by names that include the full path, the hash of the code
that is being executed, or any other mechanism that allows
us to determine the identity of the application that a process
belongs to. Such techniques are already described in different
papers [Litty et al., 2008], and its implementation is out of
the scope of this paper. In addition to specific application
names, we use the star character (∗) as a wildcard to match
any application.

The possible values for the operation component of an
access token are read, write, and execute for file-system
resources (directories), and read and write for registry sub-
keys.

2.2 Initial Access Activity Model

An initial access activity model precisely reflects all resource
accesses that appear in the system-call traces of all benign
processes that we monitored (we call this data set the training
data). Note that for this, we merge accesses to resources that
are found in different traces and even on different Windows
installations. In other words, we build a “virtual” file system
and registry that contains the union of the resources accessed
in all traces.

Whenever an application proc opens or reads from an exist-
ing file foo in directory C:\path\dir, we insert the directory dir
into our “virtual” file system, including all directories on the
path to dir . When a prefix of the directories along path already
exist in our virtual file system, then these directories are re-
used. All directories that are not already present (including
dir ) are added to the virtual file system tree. Then, we add the
access token 〈proc, read〉 to the label associated with dir .

When a process creates or deletes a file in a directory dir ,
or when it writes to a file, then we use the operation write for
the access token. Similar considerations apply for read and

write operations that are performed on the registry. Finally,
whenever a binary is executed (loaded by the OS loader), then
we add a token with execute to the directory that stores this
binary.

For example, consider that file C:\dir\foo is read by pA on
machine A, and that file C:\dir\sub\bar is written by pB on
another machine B. Then, the resulting virtual file system tree
would have C:\ as its root node. From there, we have a link
to the directory dir , which in turn has a link to sub. The label
associated with dir is {〈pA, read〉}, and the label associated
with sub is {〈pB, write〉}.

2.3 Pre-Processing

Before the model generation can proceed, there are two
additional pre-processing steps that are necessary. First, we
need to remove a small set of benign processes that either
read or execute files in many folders. The problem is that
these applications appear in many labels and could lead to
an access activity model that is less tight (restrictive) than
desirable. We found that such applications fall into three
categories: Microsoft Windows services (such as Windows
Explorer or the command shell) that are used to browse the file
system and launch applications; desktop indexing programs;
and anti-virus software. The number of different applications
that belong to these categories is likely small enough so
that a manually-created white list could cover them. In our
system, we remove all applications that read or execute files
in more than ten percent of the directories. We found a total
of 15 applications that fit this profile: nine Windows core
services, two desktop indexing applications, and six anti-virus
(AV) programs. Identifying such applications automatically is
reasonable, because we assume that our training data does not
contain malicious code. However, the number of white-listed
applications is so small that the entries can be easily verified
manually.

The second pre-processing step is needed to identify appli-
cations that start processes with different names. We consider
that two processes with different names belong to the same
application when their executables are located in the same
directory. We have found 14 applications that start multiple
processes with different names. These include well-known
applications such as MS Office, Messenger, Skype, and Re-
alPlayer. Of course, all Windows programs that are located in
C:\Windows\system32 are also aggregated (into a single meta-
application that we refer to as win core). Merging processes
that have different names but that ultimately belong to the
same application is useful to create tighter access activity
models.

2.4 Model Generalization

Based on the initial access activity model, we perform a
generalization step. This is needed because we clearly cannot
assume that the training data contains all possible programs
that can be installed on a Windows system, nor do we want
to assume that we see all possible resource accesses of the
applications that we observed. Also, the initial model does
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not contain labels for all folders (recall that the access is only
recorded for the folder that contains the accessed entity).

The generalization step performs a post-order traversal
of both the virtual file system tree and the virtual registry
tree. Whenever the algorithm visits a node, it performs the
following four steps:

Step 1: First, the algorithm checks the children of the current
node to determine whether access tokens can be propagated
upward in the tree. Intuitively, the idea is that whenever we
inspect a folder (node) and observe that all its sub-folders
are accessed by a single application only, we assume that the
current folder also belongs to this application.

More formally, the upward propagation rule works as fol-
lows: For each operation op, we examine the labels of all
child nodes and extract the access tokens that are related to
op. This yields a set of access tokens {t1, . . . , tn}. We then
inspect the applications involved in these accesses (i.e., the first
component of each token ti). When we find that all accesses
were performed by a single application proc, we add the access
token 〈proc, op〉 to the current label.

Step 2: The upward propagation rule of Step 1 is used to
identify parts of the file system or the registry that belong to
a single application. However, this is problematic when con-
sidering container folders. A container is typically a directory
that holds many “private” folders of different applications. A
private folder is a folder that is accessed by a single application
only (including all its sub-folders). A well-known example of
a container is the directory C:\Program Files, which stores the
directories of many Windows programs.

Since a container holds folders owned by many different
applications, its label would deny access to all sub-folders that
were not seen during training. This might be more restrictive
than necessary. In particular, we would like to ensure that
whenever an application accesses a previously-unseen folder
in a container, this should be allowed. Intuitively, the reason is
that this access follows an expected “pattern,” but the specific
folder has not been seen during training. To handle these cases,
we introduce a special flag that can be set to mark a folder as
a container.

The following rule is used to mark a folder as a container:
Similar to before, we examine the labels of all child nodes
and extract the access tokens that are related to each operation
op. We then inspect the set of access tokens that is extracted
{t1, . . . , tn}. When the applications in these accesses are
different, but there is no wildcard present in any access
token, then the folder is marked as container. We explain the
implications of a container flag for detection in Section 2.5.

Step 3: Next, the access tokens in the label associated with the
current node are merged. To this end, the algorithm first finds
all access tokens that share the same operation op (second
component). Then, it checks their application names (first
components). When all tokens share the same application
name, they are all identical, and we keep a single copy. When
the application names are different, or one token contains
the wildcard, then the tokens are replaced by a single token
in the form {〈∗, op〉}. Merging is useful to generalize cases
in which we have seen multiple applications that perform

identical operations in a particular folder, and we assume that
other applications (which we have not seen) are also permitted
similar access.

Step 4: Finally, the algorithm adds access tokens that were
likely missed because of the fact that the training data is
not complete. More precisely, for each access token that is
related to a write operation, we check whether there exists
a corresponding read token. That is, for all applications that
have written to a folder, we check whether they have also
performed read operations. If no such token can be found,
we add it to the label. The rationale for this step is that an
application that can write to resources in a folder can very
likely also perform read operations. While it is possible to
configure files and directories for write-only access, this is
very rare. On the other hand, adding read tokens allows us to
avoid false positives in the more frequent case where we have
simply not seen (legitimate) read operations in the training
data.

When the generalization algorithm completes, all nodes in
the virtual file system and the registry tree have a (possibly
empty) label associated with them.

Note that, for building the access activity model, we do
not require any knowledge about malicious processes. That
is, the model is solely built from generalizing observed, good
behavior.

2.5 Model Enforcement and Detection
Once an access activity model M is built, we can deploy
it in a detector. More precisely, a detector can use M to
check processes that attempt to read, write, or execute files
in directories or that read or write keys from the registry.

The basic detection algorithm is simple. Assume that an
application proc attempts to perform operation op on resource
r located in \path\dir. We first find the longest prefix P
shared between the path to the resource (i.e., \path\dir) and the
folders in the virtual tree stored by M . For example, when the
virtual file system tree contains the directory C:\dir\sub\foo
and the accessed resource is located in C:\dir\sub\bar, the
longest common prefix P would be C:\dir\sub. We then
retrieve the label LP associated with this prefix and check
for all access tokens that are related to operation op (actually,
after generalization, there will be at most one such token, or
none). When no token is found, the model raises an alert.
When a token is found, its first component is compared with
proc. When the application names match or when the first
component is ∗, the access succeeds. Otherwise, an alert is
raised.

The situation is slightly more complicated when the folder
that corresponds to the prefix P is marked as container. In
this case, we have the situation that a process accesses a
sub-folder of a container that was not present in the training
data. For example, this could be a program installed under
C:\Program Files that was not seen during training. In this
case, the access is permitted. Moreover, the model is dynam-
ically extended with the full path to the resource, and all new
folders receive labels that indicate that application proc is its
owner. More precisely, we add to each label access tokens in
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form of 〈proc, op〉 for all operations. This ensures that from
now on, no other process can access these newly “discovered”
folders. This makes sense, because it reflects the semantics of
a container (which is a folder that stores sub-folders that are
only accessed by their respective owners).

Whenever an alert is raised, we have several options. It is
possible to simply log the event, deny that particular access,
or terminate the offending process.

3 HYPERVISOR FRAMEWORK DESIGN

In this section we present the design of a hypervisor-based de-
tector that implements the system centric technique presented
in the previous section. It is important to note that the design
part of the Hypervisor is one of the main contributions of the
extension of the paper.

Our enforcement model exploits hardware virtualization
support available in commodity x86 CPU [AMD, Inc., ],
[Neiger et al., 2006]. Leveraging hardware-assisted virtual-
ization technology, we design a tamper-resistant and efficient
detector that is able to take over the OS operations and verify
the policies derived from the AccessMiner system. Our design
goals provide two main contributions: (1) Provide an efficient
detection monitor technique (2) Establish a trusted path for
system call execution and provide control flow integrity for
the whole system call execution. Both properties are really
important to design a resilient and secure reference monitor.

3.1 Technology Overview
Before presenting the details of our detector implementation,
we provide a brief introduction on Intel Virtualization Tech-
nology (VT-x) [Neiger et al., 2006].

The main characteristic of Intel VT-x is the support for two
new VMX modes of operation. When VMX is enabled, the
processor can be either in VMX root mode or in VMX non-root
mode. The behavior of the processor in VMX root mode is
similar to classic protected mode, except for the availability of
a new set of instructions, called VMX instructions. Non-root
mode is, instead, limited, even when the CPU is running in
ring 0. Thanks to this, the virtual machine monitor (VMM) can
inspect and intercept operations on critical resources without
modifying the code of the guest OS (i.e., the virtualized OS).
Moreover, because non-root mode operation supports all four
IA-32 privilege levels, guest software can run in the original
ring it was designed for.

A processor which has been turned on in normal mode
can be switched to VMX root operation by executing a
vmxon operation. The VMM running in root mode sets up
the environment and initiates the virtual machine by executing
the vmlaunch instruction.

Intel VT-x technology defines a data structure called virtual
machine control structure (VMCS) that embeds all the infor-
mation and the configuration needed to capture the state of the
virtual machine, or resume its execution. The various control
fields determine the conditions under which control leaves the
virtual machine (VM exit) and returns to the VMM, and define
the actions that need to be performed during VM entry and
VM exit operations.

Various events may cause a VM exit, and can be configured
with a very fine precision by the hypervisor (e.g., exceptions,
I/O operations). Furthermore, the processor can also exit
from the virtual machine explicitly by executing a vmcall
instruction.

3.2 Threat Model
The threat model we adopt in this paper considers a very
powerful attacker who can operate with kernel-level privileges.
On the other side, the attacker does not have physical access
to the machine and, therefore, cannot perform any hardware-
based attack (e.g., a DMA attack [Wojtczuk, 2008]) and he
cannot tamper with the hypervisor operations. We assume that
our hypervisor starts during the boot process of the machine
and it is the most privileged hypervisor on the system.

Should the deployment scenario require it, it is also pos-
sible to leverage late-launching [Neiger et al., 2006] to load
AccessMiner hypervisor after the boot. For this to be feasible,
however, we have to relax our threat model a little. Indeed, we
must assume that either there is no malware on the machine
before we launch AccessMiner or that we leverage an integrity
checking technique to ensure that the hypervisor is not altered
at load time [Martignoni et al., 2010], [McCune et al., 2008].
Despite this requirement, a hot-bootable hypervisor can be
quite useful in scenarios in which it is not possible to restart
the machine (e.g., when it provides some critical service).

3.3 Hypervisor Architecture
The Detector system is composed by three components: a
system call interceptor, a policy matcher, and a process
revealer. The outputs of all the components are combined
together to check the policies derived by AccessMiner system.
In Figure 2, we depict a scheme of the overall architecture.
The overhead in executing security tools out of the guest OS
is primarily due to the change in privilege levels that occurs
while switching back and forth between the kernel-level and
the hypervisor-level. We set the performance requirements for
system call tracer’s design to improve the performance of the
system. In particular, we set two properties:

• (P1) Fast invocation: Invoking the monitor handler for a
system call should not involve any privilege level changes
if it is not needed.

• (P2) Data read/write at native speed: The monitor code
should be able to read and write any system data and local
data at native speed.

To state the security requirements, we consider an adversar-
ial program A residing in the same environment as the system
P. As we already described above In our threat model, A runs
with the highest privilege in the guest VM and therefore can
directly read from, write to and execute from any memory
location that is not protected by the hypervisor by using
sophisticated attack such as kernel rootkits. To ensure the
security of the system call Monitor and its own trusted path,
we state the security requirements:

• (S1) Isolation of Monitor’s code and data: This ensures
the integrity of the Monitor’s code and data is protected



6

Operating system kernel

User
process

User
process

User
process

VMX Non-root mode
VMX Root mode

Syscall
Interceptor

Process
Revealer

Policy
Matcher

AccessMiner

V
M

exit

Process?

V
M

I

Hardware

Fig. 2. Hypervisor Architecture.

from the adversary A. The Hypervisor approaches satisfy
this requirement because A does not have any means to
access to the Hypervisor code and data.

• (S2) Designated point for switching into Monitor’s
code: This requirement ensures that an attacker does
not invoke any code in Monitor’s code other than the
designated points of entry (i.e., system call invocation).

• (S3) A handler is called if and only if the correspond-
ing hook is executed: This requirement has two parts:

– If a hook is reached in the monitored system, then
the corresponding handler must be initiated by the
system.

– A handler is initiated only if the hook was executed.
The second requirement can be satisfied because the exact
vmcalls that initiated the hypervisor execution can be
identified and checked.

• (S4) The hooking mechanism must provide a trusted
path system call execution: The interception mechanism
must provide a trusted path between the invocation of the
system call and its own termination.

Our interception mechanism is designed with all the perfor-
mance and security requirements in mind, described above.

3.3.1 Protected Memory Mechanism
Generally, the kernel is mapped into a fixed address range
in each process address space. We define this address range
the system address space. Since we are primarily interested
in kernel level monitoring (e.g., system call parameters), we
denote any code and data contained in the system address
space as kernel code and kernel data. Since we do not
know which kernel pages will contain data (e.g., some kernel

code pages could be re-mapped in data pages) we need to
map all the kernel memory pages into the Monitor address
space. All pages containing kernel code will have read and
execute privileges, but we assume that the kernel code can be
write protected. The data regions will have all access rights.
The System call Monitor (SCM) address space includes the
Monitor’s code (SCM code) and data (SCM data). However,
some of the permissions are set differently. The kernel code
and data regions do not have execute permissions. This means
that while execution is within the SCM address space, no code
mapped from the system address space will be executable.
This is used to limit the surface attack code in case a privilege
escalation attack occurs at the hypervisor level. The invocation
checking modules are also contained only in the SCM address
space and have execution privileges. Since the system address
space contents are mapped into the SCM address space, an
important requirement for the mapping to work is to ensure
that other additional regions in the SCM address space do
not overlap with the mapped regions from the system address
space. This is achieved during the initialization of the Hypervi-
sor that splits the memory in two main areas, the one dedicate
to the system and the one dedicated to the Hypervisor data and
code. It is important to note that the Hypervisor for the system
should only map the entries of the page table that refers to the
Data and Kernel Code. Since the System call Monitor address
space contains all kernel data and also the Monitor data in its
address space, the instructions as part of the security monitor
can access these regions at native speed. This satisfies the
performance requirement (P2). The memory mapping method
we have introduced satisfies the isolation security requirement
(S1) by having the Monitor code and data regions in a separate
Monitor address space.

3.3.2 Checking Invocation Points
The entry and exit gates are the only regions that are mapped
into both the system address space in pages having executable
privilege. This ensures that a transfer between the address
spaces (system to SCM and vice versa) can only happen
through code contained in these pages. Moreover, since these
pages are write-protected by the hypervisor, its contents cannot
be modified by any in-guest code.

To satisfy the security requirement (S3, S4), once the SCM
address space is entered through one of the entry gates, the
invocation of the gate needs to be checked to ensure that it
was from the only hook that is allowed to call the gate. The
challenge is that, since the entry gate is visible to the guest
OS’s system address space, a branch instruction can jump to
this location from anywhere within the system address space.
Moreover, we cannot rely on call instructions and checking
the call stack because they are within the system address
space and as such the information cannot be trusted. We
utilize a hardware debugging feature available in the Intel
processors after Pentium 4 to check the invocation points.
This feature, which is called last branch recording (LBR),
stores the sources and targets of the most recently executed
branch instructions in some specific processor registers. The
last branch recording feature is activated by setting LBR flag in
the IA32_DEBUGCTL MSR. Once set, the processor records
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a running trace of a fixed number of last branches executed
in a circular queue.

For each branch, the address of the branch instruc-
tion and its target are stored as pairs. The number of
pairs stored in the LBR queue varies among the x86 pro-
cessor families. However, all families of processors since
Pentium 4 record information about a minimum of four
last branches taken. These values can be read from the
MSR registers MSR_LASTBRANCH_k_FROM_IP and the
MSR_LASTBRANCH_k_TO_IP where k is a number from
0 to 3. We check the branch that transferred execution to
the entry gate using the LBR information. In the invocation
checking routine, the second most recent branch is the one that
was used to invoke the entry gate. We check that the source
of the branch corresponds to the hook that is supposed to call
the entry gate. Although the target of the branch instruction
is also available, we do not need to verify it if the source
matches. A conceivable attack may be an attempt to modify
these MSR registers in order to bypass the invocation checks.
We need to stop malicious modifications to these MSR,
but at the same time ensure that performance requirement
is not violated. With Intel VT, read and write accesses to
MSR registers can selectively cause VMExits by setting the
MSR read bitmap and MSR write bitmap, respectively. Using
this feature, we set the bitmasks in such a way that write
attempts to the IA32_DEBUGCTL MSR and the LBR MSRs
are intercepted by the hypervisor but read attempts are not.
Since the invocation checking routine only needs to read the
MSRs, performance is not affected.

3.3.3 Trusted Path Execution
The core of the system is represented by the System Call
Tracer component. Its goal is to intercept the operations per-
formed by the OS, in terms of system call type, parameters and
return values. All these information will be used by the Policy
Matcher, to verify the right permissions on a certain resources
on behalf of the process. There are two main requirements
for this component: (S4) The interception mechanism must
provide a trusted path between the invocation of the system
call and its own termination. In particular the system needs
to provide a secure hooking mechanism for intercepting the
invocation and termination of OS operation. (P1) The overhead
of the interception mechanism must be kept as low as possible.
The trusted path is crucial for our work and it represents one
of the main contributions of the extended version of the paper.

In order to retrieve all system call information, we need to
monitor the invocation of the operation along with its own
termination. Whenever a system call is issued by a process, a
sysenter instruction is invoked. The sysenter instruction
refers to the SYSENTER EIP MSR that contains the address
of the system call handler. In order to bring the execution
flow inside the hypervisor, we need to switch from VMX non-
root mode to VMX root mode. For this reason, we overwrite
the SYSENTER EIP MSR so that it points to a vmcall
instruction. By using this hooking technique the hypervisor is
able to intercept all the system calls performed by the OS and
to parse the parameters according to their type. Note that any
change of the MSR value on behalf of the system is intercepted

and denied by the hypervisor. In this way, the system is able to
protect the system call interception mechanism (requirement
S4).

Before passing the information to the Policy Matcher, the
system also needs to check whether the operation is successful
or not and to collect its return value. For this purpose, our
hypervisor is able to intercept a sysexit instruction by
substituting it with a vmcall. Any attempt to re-write the
VMX instruction is prevented by the hypervisor through a
memory page protection mechanism (requirement S4). To
verify the trusted path of the system call, our hypervisor also
implements a simple automaton that checks the correctness
of the system call execution flow. Every time a sysenter
(entry gate) is intercepted an opening bracket “(” transition is
triggered to indicate which system call was invoked. Every
time a sysexit (exit gate) is intercepted, the hypervisor
verifies that the watchpoint was expected, given the invoked
system call. It performs this step repeatedly until it sees the
watchpoint “)”, corresponding to the end of the system call
request. Any unknown state is reported as a system anomaly.
If the operation succeeded, the System Call Tracer invokes the
Policy Matcher component and provides all the information on
the system call type, parameters, and return value.

Since the hypervisor is intercepting a high number of
system calls, the hooking mechanism is a critical component
from a performance point of view. Consequently, to improve
performances, we devise two modifications to our original im-
plementation. First, the system allocates a protected memory
page that contains a short control code and some data about the
monitored system calls—such as the system call types and the
memory handler code address. Based on the system call type,
the code decides whether to invoke a hypercall to switch to
monitor mode or to leave the control-flow to the default system
call handler. By using this technique we are able to exclude
the non-monitored system calls and reduce the overhead of
the whole hypervisor system (requirement P1). More details
about performance evaluation are reported in the Section 6.

Another relevant source of overhead is related to possible
multiple repetitions of the same system call from the same
process. For example, during a file copy operation, the same
read and write operations are repeated multiple times, accord-
ing to the size of disk blocks and of copied file. Since there
is no reason to check the permissions for each operation, our
system is designed to verify only the first occurrence of the
operation and run the other operations natively. The overhead
caused by the repetition of these operations is thus avoided.
This is implemented by introducing a small cache that contains
a checksum based on the system call number, its parameters,
and the value of the CR3 register of the process which is
performing the operation. Every time the system discovers
a new operation, we insert it into the cache and when the
operation is not likely to be repeated (e.g., the corresponding
process terminates, or the file is closed), we flush the cache
entry related to that operation. In this way we only check the
first operation and we skip possible repetitions (requirement
P1). We report a measurement of the effectiveness of our cache
in Section 6, Figure 6 and Figure 7.
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3.3.4 Process Revealer

The goal of this component is twofold: First, it extracts
and provides the name of the process that is performing the
actual operation (i.e., a system call) through Virtual Machine
Introspection [T. and M, 2003] and, second, it caches this
information to reduce the system overhead. The component
keeps a cache that allows to lookup the name of the process
given a certain CR3 value. The cache is updated every time a
process is created or destroyed, by properly intercepting and
analyzing process-related system calls.

3.3.5 Policy Checker

The goal of this component is to check AccessMiner policies
and to generate an alert in case some of them are violated.
The policies are created by the model described in Section 2
and enforced system follows the model described in Section
2.5.

We recognize two main phases for the Policies Checker
task: Initialization and Detection phase. The initialization
phase is responsible to create the memory structures that
will be used for the detection phase. In particular, to check
the file system and registry policies, we adopt a hash table
memory structure where the name of each resource is used
as key and the name of process with its own permissions
on that resource is stored as value. During the initialization
phase, the hypervisor receives the signatures using the ad-hoc
network communication protocol we briefly mentioned above.
Then, whenever a signature is loaded, the full pathname of
the corresponding resource is extracted and inserted in the
memory structure as a key of the hash table. The list of the
processes that can get access to the resource along with their
own access permission are inserted as elements of such a key.

Another important memory structures used by the policy
matcher is the file/registry handles structure. Since most of
the file system and registry system calls operate on handles,
while our policy system works with full-pathname resources,
the system needs to keep the association between a handle
number and the resource full pathname. For this reason, we
use a dynamic memory structure that tracks this association.
During the monitoring of the system, every time a resource is
created or opened, the system retrieves the handle associated
to the resource full pathname and it registers it in the structure.
Afterwards, when a system call operates on the same handle,
the corresponding object is retrieved from the handle structure.
Every time a handle is closed, the system removes it from the
handles memory structure.

To protect the policy information loaded during the initial-
ization phase, the network driver that receives commands is
only enabled when the hypervisor is in Management mode—
in our prototype, this is triggered by using a special keystroke
sequence. On the other hand, to protect the policies from
network attacks, a signature scheme between the hypervisor
and the management console is provided. In this way, we
can assure that no one is able to tamper the hypervisor
configuration information, according to our thread model.

During the detection phase, the System Call Tracer invokes
the Policy Checker with the relevant system call information.

At this point, the Policy Checker, by using the resources full-
pathname as a key of the hash table, retrieves the list of the
processes along their permissions. It also queries the process
Revealer component in order to retrieve the processes name
that acts as a subject of the operation. Once all the information
is obtained, it scans the list of the processes to search the
process name. If the process is not allowed to perform the
operation, the Policy Checker raises an alert and blocks the
operation. Otherwise, it permits the operation and then returns
to non-root mode.

4 SYSTEM CALL DATA COLLECTION
In this section, we discuss our efforts to collect a large
and diverse set of system call traces. Our requirements are
geared towards imposing the least impact on the users whose
machines are part of the data collection effort. Thus, the
data collection framework must have minimal impact on the
performance of those machines, must operate with and without
network connectivity, must ensure that private information
does not leave the user’s machines, and must make almost
no assumptions about the run-time environment. For example,
requiring that users make use of virtual machines would
significantly restrict the practical applicability of our data
collection. Additionally, the data collection framework must be
capable of extracting a rich set of attributes for each event (i.e.,
system call) of interest. Unfortunately, none of the existing
system call tracing tools satisfies these requirements, so we
built and deployed our own data collection framework.

Our system consists of a number of software agents,
which, once installed on user’s machines, automatically col-
lect, anonymize, and upload system call logs, and a central
data repository, which receives logs from each machine and
normalizes the data in preparation for further analysis. The
software agents can be installed by users on their own ma-
chines and are mindful of system load, available disk space,
and network connectivity. Furthermore, users can enable and
disable the collection agent as they wish.

Our analysis and training algorithms need several informa-
tion regarding each system call. Therefore, our sensors were
designed to collect the system call number and its arguments,
its result (return) code, the process ID, the process name, and
the parent process ID. Each log entry is represented by a tuple
in the form:

〈timestamp, program, pid , ppid , system call , args, result〉

This data allows us to perform our analyses within a single
process, across multiple executions of the same program, or
across multiple programs.

4.1 Raw Data Collection
The software agent that collects data is a real-time component
running on each user’s machine. This agent consists of a
data collector and a data anonymizer. We implemented our
agent for Microsoft Windows, as it is the OS targeted the
most by malware. The description in the remainder of this
section provides details specific to the Microsoft Windows
platform. The data collector is a Microsoft Windows kernel
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module that traces system call events and annotates them
with additional process information. The data anonymizer
transforms the collected system call data according to privacy
rules and uploads it to the remote, central data repository. More
in details the privacy rules used for our system are described
in the section below called Log anonymizer.

Kernel collector. The main goal of this component is to
collect system call and process information across the entire
system. In order to intercept and log system call information,
the kernel data collector hooks the SSDT table [Hoglund and
Butler, 2005]. The kernel collector logs information for 79
different system calls in five categories: 25 related to files,
23 related to registries, 25 to processes and threads, one
related to networking, and five related to memory sections.
We selected the same subset of system calls that are used in
Anubis [Anubis, ], which covers the relevant operations that
manipulate persistent OS resources.

A challenge arises from the fact that the kernel collector
does not necessarily observe the start of a new process. One
reason is that the user can disable and re-enable the software
agent at any point. Another reason is that the kernel collector is
started as the last kernel module in the system boot process.
This means that the kernel collector might observe system
calls that refer to previously acquired resource handles, but
without having any information about which resources those
handles point to. As a special case, some resource handles
(e.g., handles to the registry roots) are automatically provided
to a process by the OS at process-creation time. Consequently,
if we log only the parameters for each individual system call
that we observe, we lose information about previously (or
automatically) acquired resources. To address this problem,
we query the open handler table for each process we have not
seen before. This allows the kernel collector to retrieve the
open objects already associated with a new process. We store
the path names of these objects for later use, for example when
we intercept a system call (such as NtOpenKey) that references
a pre-existing handle.

Log anonymizer. To protect the privacy of our users, we
obfuscate or simply remove arguments of various system calls
before sending the log to the data repository. The obfuscation
consists of replacing part or the entire sensitive argument value
with a randomly-generated value. Every time a value repeats, it
is replaced with the same randomly-generated value, so that we
can recover correlations between system call arguments. We
consider as sensitive all arguments whose values specify non-
system paths (e.g., paths under C:\Documents and Settings are
sensitive), all registry keys below the user-root registry key
(HKLM), and all IP addresses. Furthermore, we remove all
buffers read, written, sent, or received, thus both providing
privacy protection and reducing the communication to the data
repository. The data repository indexes the logs by the primary
MAC address of each machine.

Impact on performance. We designed the software agent
to minimize the overhead on users’ activities. The kernel
module collects information only for a small subset of the 79
system calls. Log are saved locally and processed out of band
before being sent to the server, when network connectivity is

available. Users can turn data collection on and off, based on
their needs. Local logs are uploaded to the repository when
they reach 10 MB in size and logging is automatically stopped
if available disk space drops below the 100 MB threshold.
Each 10 MB portion of the system call log is compressed
using ZIP compression, for a 95% average reduction in size
(from 10 MB to 500 KB). Given these techniques, we are
confident that users were able to use their computers with the
data collector present as they would normally do, and thus
the collected system call logs are representative of day-to-day
usage.

4.2 Data Normalization
The purpose of this component is to process the raw system
call logs and extract the fully qualified names of the accessed
resources as well as the access type. For files and directories,
the fully qualified name is the absolute path, while for registry
keys it is the full path from one of the root keys.

To compute fully qualified resource names, we track for
each process the set of resources open at any given time, via
the corresponding set of OS handles. When a resource (file
or registry key) is accessed relative to another resource (either
opened by the process or opened by the OS automatically for
the process), we combine the resource names to obtain a fully
qualified name.

Computing the access type (e.g., read, write, or execute)
requires tracking the access operations performed on a re-
source. This is more tricky than expected. When a resource
is acquired by a program (e.g., a file is opened), the program
specifies a desired level of access. This information, however,
is not sufficiently precise for our needs. This is because,
often, programs open files and registry keys at an access level
beyond their needs. For example, a program might open a file
with FULL ACCESS (i.e., both read and write access), but
afterward, it only reads from the file. Since we are interested
in the actual access type, we track all of the operations on a
resource, and only when the resource is released (on NtClose),
we compute the access type as a union of all operations on
the resource.

In Microsoft Windows, there is no single system call that
starts a new process from a given executable file. In order
to retrieve the execution path and file name, the normal-
izer needs to recognize the NtOpenFile system calls that
belong to the process-creation task. When a process is cre-
ated, the OS executes a set of system calls to allocate re-
sources, load the binary executable, and start the new process:
NtOpenFile, NtCreateSection with desired executable access,
and NtCreateThread. Consequently, we automatically identify
occurrences of this pattern and extract the executable path and
file name.

4.3 Experimental Data Set
We used different datasets in our experiments. The first is
a collection of execution traces of 6,000 malware samples
randomly extracted from Anubis [Anubis, ]. This set, that we
call malware, includes a mix of all the existing categories (e.g.,
botnets, worms, dropper, Trojan horses), extrapolated from
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Machine Data System calls Processes Applications
(GB)

(
×106

) (
×103

)
1 18.0 285 55.1 90
2 4.5 70 22.4 87
3 5.6 89 17.7 46
4 32.0 491 110.9 41
5 34.0 514 125.6 42
6 14.0 7 2.8 73
7 1.3 19 3.7 49
8 1.2 18 3.0 22
9 1.6 27 8.5 47

10 2.3 36 12.9 26
Total 114.5 1,556 362.6 242

TABLE 1
Characteristics of our Data Set.

Machine Usage Data Time Data rateLogged Total
(GB) (hours) (days) (MB/minute)

1 office 18.0 12 3 8
2 home 4.5 4 3 6.25
3 home 5.6 3 4 7.77
4 prod. 32.0 12 3 14
5 prod. 34.0 12 3 15
6 lab 14.0 8 3 11
7 home 1.3 3 2 4
8 home 1.2 3 2 4
9 dev. 1.6 2 2 6
10 dev. 2.3 2 3 6.4

TABLE 2
Data Rates During Collection.

malware that is active in the wild. The second dataset contains
114.5 GB of execution traces collected from 10 different
real-world machines, where we observed normal day-to-day
operation of end-users computer. In particular, the benign
data consists of 1.556 billion of system calls, from 362,600
processes and 242 distinct applications. In table 1 we provide
detailed information for each machine. The choice of the nine
machines used for model construction is done using 10-fold
cross-validation approach. The evaluation results presented
here are averages across the 10 tests. We deployed our data
collection framework on ten different Windows machines, each
belonging to a different user. The users had different levels
of computing expertise and different computer usage patterns.
Based on their role, the machines can be classified as follows:
two development systems, one office system, one production
system, four home PCs, and a computer-lab machine.

Our system collected data from each machine at an av-
erage rate of 8.2 MB/minute, with highly used machines
producing logs at 40 MB/minute and idle machines producing
1.5 MB/minute. In table 2, we report the logging time for
the ten different machines. For each machine, we show the
machine’s usage profile, the size of data collected, the total
time during which data was actually collected, the time period
between the first log entry and the last log entry, and the
average data rate. For example, the fourth row indicates that
machine 4 was a production server that generated 32 GB of
system call logs, over a period of 3 days, during which data
collection was active for 12 hours.

5 DETECTION RESULTS

In this section, we evaluate the effectiveness of our system in
detecting malicious activities on real systems.

More precisely, we conducted ten experiments. For each
one, we selected one of the machines and we used the system
calls recorded on the other nine hosts to generate the access
activity model, as described in Section 2. Finally, we used
this model for detection by checking the resource accesses
performed by all processes on the machine that was not
used for model generation. Then, we examine the accesses
performed by the malware samples. For each experiment, we
evaluate the detection capabilities and false positives of the
file system model alone, the registry model alone, and both
models combined.

5.1 File System Access Activity Model
On average, the file system access activity model contains
about 100 labels. These labels contain tokens that restrict
read access to about 70 directories, write access to about 80
directories, and execute access to about 30 directories. The
results for the file system model are shown in Table 3. In this
table, we see a number of different columns for the detection
rates and the false positive rates. These are discussed in the
following paragraphs.

When using the original model to check all read, write, and
execute accesses, we see an average detection rate of 66%
for the malware samples (column Detection rate) and a false
positive rate of almost 15% (column False positive rate). Note
that the false positive rates are computed on the basis of single
applications and not on a process basis.

At first glance, the results appear sobering. However, a
closer examination of the result reveals interesting insights.
First, we decided to investigate the false negative rate in more
detail. When looking at the execution traces of the malware
programs, we observed that many samples did not get far in
their execution but quickly exited or crashed. Interestingly, a
substantial fraction of suspicious samples never wrote to the
file system or the registry, and they did not open any network
connections. It is difficult to confirm that these samples exhibit
any malicious activity at all. As a result, we decided to remove
from our malware data sets all samples that never perform a
write operation or open a network connection. This decreases
our malware data set to 7,847 samples that exhibit at least
some kind of activity. It also improves our detection rate to
more than 90%, as reported in column Adjusted detection
rate of Table 3. For the remainder of this paper, all reported
detection rates are computed based on the adjusted malware
data set.

In the next step, we investigated the false positives in
more detail. Table 3 shows the access violations for each
machine, divided into violations due to read (column Read),
write (column Write), and execute (Execute) access attempts.
It can be seen that execute violations account for a significant
majority of false positives. However, we also found that they
are only marginally important for detection. Thus, for the next
experiment, we decided to use only the access tokens that
refer to write operations. This is justified by the fact that we



11

Experiment 1 Experiment 2

Machine Detection
rate

False
positive

rate

Adjusted
detection

rate

Rates of detected access violations Detection
rate (only

writes)
Read Write Execute

1 0.656 0.225 0.906 0.000 0.022 0.222 0.864
3 0.657 0.154 0.907 0.000 0.130 0.043 0.902
4 0.657 0.156 0.907 0.024 0.049 0.122 0.902
5 0.657 0.143 0.907 0.024 0.024 0.095 0.902
6 0.635 0.242 0.877 0.014 0.055 0.242 0.868
7 0.657 0.267 0.907 0.020 0.041 0.265 0.901
8 0.657 0.045 0.907 0.000 0.045 0.000 0.902
9 0.657 0.025 0.907 0.000 0.025 0.000 0.902
10 0.657 0.050 0.907 0.000 0.038 0.038 0.902

Average 0.655 0.148 0.904 0.008 0.044 0.137 0.895

TABLE 3
Partial Detection Based on our Filesystem Access Activity Model.

Machine FP
rate

Final
det.rate

1 0.0 0.864
2 0.0 0.902
3 0.0 0.902
4 0.0 0.902
5 0.0 0.902
6 0.0 0.868
7 0.0 0.901
8 0.0 0.902
9 0.0 0.902

10 0.0 0.902
Average 0.0 0.895

TABLE 4
Final Detection Based on our Filesystem Access Activity Model.

are most interested in preserving the integrity of the operating
system resources. The detection results for the new write-only
detection approach are presented in column Detection rate
(only writes) of Table 3. As can be seen, the numbers remain
high with 89.5%. This confirms that write access violations are
a good indicator for malicious activity. With this approach, the
false positives are identical to the write violations, which are
shown in column Write.

We further examined the reasons for the remaining write
violations. It turned out that these violations were due to two
root causes. One set of false positives was caused by our
own system-call logging component that wrote temporary files
directly into the C:\ directory before sending the data over the
network. The second violation was due to software updates.
More precisely, we detected a number of cases in which
an application was writing to its folder in C:\Program Files.
Of course, only this program had read/execute access to
that directory. However, we never saw a write access during
training, and as a result, the directory was considered read-
only. To accommodate for updates, we manually added a rule
to the model that would grant write permission to applications
that “own” directories in C:\Program Files. Moreover, we
granted our component write access to C:. With more extensive
training, both access activities would have very likely been
added automatically. The model that incorporated our minor
adjustments generated no more false positives, as shown in
Table 4. However, the detection capabilities of the model

Machine Detection
rate

False
positive

rate

Det.
rate
(only

writes)

FP rate
(only

writes)

Final
det.
rate

1 0.567 0.063 0.530 0.063 0.521
2 0.557 0.107 0.540 0.053 0.521
3 0.566 0.179 0.530 0.128 0.062
4 0.557 0.000 0.530 0.000 0.540
5 0.557 0.000 0.530 0.000 0.540
6 0.557 0.015 0.530 0.000 0.540
7 0.597 0.133 0.530 0.000 0.540
8 0.557 0.067 0.530 0.067 0.537
9 0.561 0.100 0.530 0.025 0.521

10 0.557 0.000 0.530 0.000 0.540
Average 0.563 0.066 0.530 0.034 0.486

TABLE 5
Detection Based on our Registry Access Activity Model.

remain basically unchanged, as shown in Table 4.

5.2 Registry Access Activity Model
In our experiments, the registry access activity model con-
tained in average about 3,000 labels, significantly more than
the file-system model. In particular, the labels contained tokens
that restrict read access to about 1,600 keys and write access
to about 2,800 keys (execute is not defined for registry keys).

The results for the registry model are shown in Table 5.
The columns Detection rate and False positive rate show the
detection rates and the false positive rate, respectively, for the
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original model. It can be seen that both the detection rate and
the false positive rates are lower than for the file system model.
We also examined the detection rate and the false positive rate
when considering only write operations (columns Det. rate
(only writes) and FP rate (only writes)). Similar to the file
system case, the false positive rate drops significantly; there
are five runs in which no false positives were reported at all.
However, the detection rate remains (relatively) high.

We also examined the cases for which the registry ac-
cess model raises false positives. We found that all reg-
istry write access violations can be attributed to the sub-tree
HKEY USERS\Software\ Microsoft. While this is an important
part of the registry that contains a number of security settings,
we wanted to understand the detection capabilities of a model
that permits write access to these keys. To this end, we added
a manual rule to allow writes to this sub-tree and re-run the
experiments on the malware data set. We see that the model is
still effective and achieves a detection rate of over 48% (shown
in column Final det. rate of Table 5) with no false positives.
Considering the significantly larger size of the registry models
compared to the ones for the file system, we expect that a
larger training set would be required to effectively capture
legitimate writes to the Software\Microsoft sub-tree.

5.3 Full Access Activity Model
For the final experiment, we combined those improved file
system and registry models that yielded zero false positives.
The combined detection rate improves compared to the file
system model alone, but only slightly (between 1% and 2%
for all of the ten runs). The average detection improved from
89.5% to 91% (of course, with no false positives).

5.4 Discussion.
When focusing on write operations only, our access activity
model achieves a good detection rate (more than 90%) with
a very low false positive rate. The false positive rate even
drops to zero with minor manual adjustments that compensate
for deficiencies in the training data, while still retaining
its detection capabilities. This suggests that a system-centric
approach is suitable for distinguishing between benign and
malicious activity, and it handles well even applications not
seen previously. This is because most benign applications are
written to be good operating system “citizens” that access and
manage resources (files and registry entries) in the way that
they are supposed to.

Malicious programs frequently violate good behavior, of-
ten because their goals inevitably necessitate tampering with
system binaries, application programs, and registry settings.
Of course, we cannot expect to detect all possible types of
malicious activity. In particular, our detection approach will
fail to identify malware programs that ignore other applications
and the OS (e.g., the malware does not attempt to hide its
presence or to gain control of the OS) and that carry out
malicious operations only over the network. Most of the 10%
of malware that represent the false negative was waiting for
a particular command from the network in order to perform
malicious actions (botnet, spammer etc.), or they were waiting

Fig. 3. Memory Read Operation.

for a particular conditions in order to activate themselves. In
general this malware are designed to hide information to the
user. It is important to note that the malicious system call
traces were extracted from Anubis, where the system only wait
for a small time window for analyzing a single sample (20
minutes). Consequently some malware did not have a chance
to perform their own malicious actions and cannot be detected
by AccessMiner.

6 PERFORMANCE RESULTS

In this section we report a set of micro and macro bench-
marks we used to demonstrate the efficiency of our new
system. In our experiments we run the Passmark Performance
Test suite [Software, ] in four different test environments:
on a physical machine (PM), inside a guest VMWare vir-
tual machine (VM), on physical machine with AccessMiner
(AM), and on physical machine running the Hypersight
(RTD) [Northsecuritylabs, ] real-time rootkit detector. Hyper-
sight is a hardware-supported virtual machine monitor that
starts at boot time and intercepts several types of suspicious
actions applied to critical memory structures such as attempts
to modify page tables, read-only kernel modules, and GDT
and IDT tables. All the experiments are performed on an Intel
Core i7 2.67 GHz with 3 GB of memory running a Windows
XP (32-bit) OS.

6.1 Macro Benchmark

We measured and compared the overhead introduced by Ac-
cessMiner on different workloads by using four of the Pass-
Mark performance tests: memory operations read and write,
and sequential disk read and write operations. To perform
these tests, we loaded AccessMiner with 3824 policy rules:
173 signatures related to the file system and 3651 signatures
related to the Windows registry.

The final values were obtained by taking the average of
ten repetitions for each benchmark. Figure 3 and Figure 4
show the results of the memory tests. In these cases, we used
the system to perform a sequential read or write operation
of 1GB of memory with a block size ranging from 1024
bytes up to 512 MB. As we can see in the graph, the higher
overhead is encountered in VmWare, mainly due to its memory
virtualization. AccessMiner does not introduce any overhead,
since it does not virtualize the memory but only uses a memory
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Fig. 4. Memory Write Operation.

Fig. 5. Disk Read Operation.

protection mechanism. The overhead introduced by Hypersight
is due to the memory scanning operation responsible to check
the sensible memory structures.

More interesting performance results are reported in Fig-
ure 5 and Figure 6. For this test, we performed a sequential
read and write disk operations for 1 minute. We use the NTFS
file system with a block size of 8192 bytes. As we can see in
the graphs, the overhead of our system is similar to the one
observed in a VmWare virtual machine, while the Hypersight
overhead is the same of the physical machine, since it does
not intercept any operation on the disk. The overhead for
our system is due to the high number of file system and
registry system calls performed by the benchmark program.
However, in these scenarios with multiple repetitive operations
our caching mechanism is able to reduce the overhead of
almost 80%, as reported in Figure 7 and Figure 8.

During the PassMark disk test we counted 11.000
NtRead/NtWrite system calls related to the file system
operations and other 5430 system calls related to the registry
operations. The impact of the disk operation was largely
covered by our caching system, leaving the registry responsible
for most of the overhead.

In table 6 we report the overhead of memory operations for
the four environments test: PM, AM, VM, and RTD system.
In table 7 we report the overhead of the disk operations.

To conclude the macro benchmarks, we also performed a
worse-case experiment, in which we measured the overhead
introduced by AccessMiner during a source code compilation
routine. The target of the compilation was a middle-sized C
program, composed of almost 100,000 lines of code. Results
of this last benchmark are reported in Figure 9. In this case,
since the IO operations were spread on hundreds of different

Fig. 6. Disk Write Operation.

Fig. 7. Cache/NoCache Disk Read Operation.

files, our caching mechanism was less effective in mitigating
the disk overhead. This resulted in an average AccessMiner
overhead, with respect to the physical machine baseline, of
around 2.5x. It is important to note that our system can be
tuned to obtain better performance. For instance, a possible
optimization could be to monitor only untrusted applications
that are downloaded from untrusted sources such as network
or copied from untrusted devices. Monitor only a small set of
applications can improve the performance without losing the
detection rate. It is important to note that in our design, it is
enough to remove an application from the monitored set to
exclude it from further analysis.

To conclude, the performance of AccessMiner greatly de-
pend on the type of application. However, the system normally
introduces an overhead, considering memory and disk opera-
tions together, that is comparable with the one observed in a
traditional virtual machine environment.

6.2 Micro-Benchmarks

To have a more fine-grained view of the delay introduced
by our system, we measured the overhead introduced by
triggering a system call on a particular resource. We started
by measuring the time needed to perform a context switch
between a VM exit and a VM entry (without checking any
policy), taking an average over 20 repetitions. The opera-
tion took 1216 clock cycles, corresponding to around 0.45
microseconds. The second operation that we measured was
the entire syscall monitoring mechanism. In this case, the
time needed to intercept a single system call is, in average,
1,241,739 clock cycles, or about 0.47ms. These results show
that most of the overhead introduced by our new system is
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Fig. 8. Cache/NoCache Disk Write Operation.

Memory Operations PM AM VM RTD
Read (ms) 209.8916 209.9269 277.2247 220.0006
Write (ms) 205.5485 205.1042 271.5995 212.1548

Overhead Read NA 100.0 % 132.1 % 104.8 %
Overhead Write NA 99.9 % 132.1 % 103.2 %

TABLE 6
Overhead of Memory Operations.

due to the policy validation mechanism, while the context
switch along with the monitoring mechanism does not impact
the system in a relevant way. Such results highlight the high
efficiency of our new system that is built on top of the
AccessMiner model.

7 RELATED WORK

The existing papers most relevant to our current work focus
on malware detection at the system call and the system library
interfaces. These interfaces best describe the system resources
manipulated by a program (e.g., files, other programs, other
processes, configuration data, authentication and authorization
information, network communication channels), making sys-
tem call-based detectors comparable to our access activity
model.

Fig. 9. GCC Evaluation.

Disk Operations PM AM VM RTD
Read (ms) 0.2070 1.3470 0.2460 0.2240
Write (ms) 0.1580 0.8900 0.7590 0.1640

Overhead Read NA 650.7% 118.8% 108.2%
Overhead Write NA 563.3 % 480.4 % 103.80 %

TABLE 7
Overhead of Disk Operations.

7.1 Malware Detection

Malware detection has looked at many ways to describe
program behavior, and corresponding models evolved to keep
pace with the increasing complexity of malware. Early de-
tection mechanisms were based on particular byte sequences
in the program binary that were indicative of malware. Over
time, obfuscation strategies pursued by malware writers forced
detectors to move to regular expressions over bytes [Ször,
2005], and eventually rendered them obsolete as byte patterns
have little predictive power (i.e., they can accurately capture
only previously seen malware). Other models such as byte n-
grams [Li et al., 2005], system dependencies of the program
binary [Schultz et al., 2001], and syntactic sequences of library
calls [Xu et al., 2004], [Mukkamala et al., 2004] have been
proposed with limited success. Because these models have a
strong syntactic aspect in that they capture artifacts of program
binary unrelated to the malicious behavior, malware writers
managed to evade such defenses and produce new, undetected
malware. Our emphasis on a system-centric approach to mod-
eling resource interactions bypasses such syntactic artifacts.

The software-diversity tactics employed by malware writers
required new detection techniques that could capture more
of the intent of the program and less of the syntactic char-
acteristics of the program binary. The research efforts have
focused on describing malware in terms of violations to
an information-flow policy. Because it is not feasible for
performance reasons to track system-wide information flows
accurately, the focus shifted on better and better approxima-
tions of the information flow. Bruschi et al. [Bruschi et al.,
2006] and Kruegel et al. [Kruegel et al., 2005b] showed that
some classes of obfuscations could be rendered innocuous by
modeling programs according to their instruction-level control
flow, while Christodorescu et al. [Christodorescu et al., 2005]
and Kinder et al. [Kinder et al., 2005] built obfuscation-
resilient detectors based on instruction-level information flow.
Nonetheless, instruction sequences are fungible and there are
many ways to implement the same high-level functionality.
Detection techniques then raised the bar by capturing in-
formation flow at the level of library calls, as proposed by
Kirda et al. [Kirda et al., 2006], system calls, as proposed
by Kolbitsch et al. [Kolbitsch et al., 2009], Christodorescu et
al. [Christodorescu et al., 2007], Martignoni et al. [Martignoni
et al., 2008], and Stinson et al. [Stinson and Mitchell, 2007],
and OS resources, as proposed by Yin et al. [Yin et al., 2007].
The respective evaluations of each of these techniques shows
that as the models used in detection more closely describe
actual OS resources, the detection rates significantly increase
and the false-positive rates decrease. Unfortunately the library



15

and system-call interfaces are rich enough that mimicry attacks
are still possible [Kruegel et al., 2005a], [Wagner and Soto,
2002]. This observation guided our choice of system resources
as the basic element in our models, discarding any information
about the order in which resources are accessed. Furthermore
we focus strictly on system resources that are shared across
processes (i.e., files, registry, and network connections) and
we ignore single-process resources such as virtual memory.

Beyond proposing a richer, system-centric model of pro-
gram behavior, we made a concerted effort to improve an
often overlook evaluation aspect, the external validity of the
experimental settings. This concerns the number and diver-
sity of benign and malicious programs used to evaluate a
detection technique, as well as the environment in which they
are exercised (in the case of detectors that rely on runtime
information). For example, Kirda et al. [Kirda et al., 2006]
evaluated their system against 33 malware samples and 18
benign samples, each samples executed for 30–60 seconds.
Kolbitsch et al. [Kolbitsch et al., 2009] used 563 malware
samples and 10 benign samples, executed for up to 5 minutes.
Christodorescu et al. [Christodorescu et al., 2007] evaluated
16 malware samples and 6 benign samples for up to 4 minutes,
similar to the test sets used by Martignoni et al. [Martignoni
et al., 2008] (7 malware, 6 benign) and to Stinson et al. [Stin-
son and Mitchell, 2007] (6 malware, 9 benign). Yin et al., in
their PANORAMA system, evaluated 42 malicious samples and
56 benign ones, for 5 minutes. What is common to all of these
evaluations is that both the numbers of malicious samples and
of benign samples are quite small. On current systems, regular
users often run tens of interactive applications and hundreds
of background processes, casting doubt on the relevance of
results obtained from a few benign samples. Furthermore,
evaluations in previous work were performed in virtualized,
constrained environments, where interactive applications were
exercised mechanically in ways that do not necessarily reflect
real-life usage. We addressed these limitations by collecting
execution traces of benign applications from actual users, dur-
ing the course of their normal interaction with their personal
systems. We designed our system to have low overhead and to
anonymize all collected information, so that the users had no
concerns and were not impacted in their regular use of their
machine. The benign data we collected covered 242 distinct
benign applications ran by ten users in their own environments.

7.2 Malware Classification

Another research topic that is closely related to our work is
that of classification of large sets of malware samples. Various
models have been proposed, all focusing on system calls or
on accesses to system resources. Lee and Mody performed
classification of malware samples based on the similarity
between sequences of system calls [Lee and Mody, 2006].
Bailey et al. [Bailey et al., 2007] considered similarity between
sets of accessed system resources, and Rieck et al. [Rieck
et al., 2008] considered various refinements by abstraction.
Bayer et al. [Bayer et al., 2009] used similarity between
resource-based information flows for classification. All of
these papers describe the classification task applied to large

sets of malware (thousands or tens of thousands), and thus their
results are representative. Yet, because their primary focus was
on malware classification, it is not clear that the classification
features that they derived are useful in malware detection. A
classification feature (e.g., some particular resource accesses)
might well distinguish botnet M1 from botnet M2, but it might
not be able to distinguish botnet M1 from a benign program B.
Thus our current work is orthogonal to malware-classification
research.

7.3 Access Control and Domain and Type Enforce-
ment
Our system-centric access activity model is related to access
control mechanisms, and, in particular, to mandatory access
control (MAC) systems. They both define acceptable uses of
resources in a user-independent way via a central policy. There
are numerous implementations of MAC systems, of which
SELinux [Loscocco and Smalley, 2001] is currently the most
visible. Some MAC systems have been specifically designed
to prevent malware from running in a system [Salois and
Charpentier, 2000], [Debbabi et al., 2001], while others can
enforce multi-level security policies. Based on this similarity,
the system-centric model can be converted into a SELinux
policy, for example, and our model-generation technique can
be used as a practical tool to construct SELinux policies.

There is a fundamental distinction between MAC policies
and our system-centric models. While a MAC policy neces-
sarily enumerates all the programs and the program-specific
rules, a system-centric model is more general in that it defines
confidentiality and integrity rules for all programs. While it
might appear that system-centric models are less restrictive,
in our experimental evaluation, we observed a very good
match between our models and real-life application executions.
Additionally, MAC policy are often deployed to ensure the
confidentiality and integrity of system files, at the cost of
leaving user files poorly (if at all) secured and in need of
additional mechanisms, such as the PinUP tool proposed
by Enck et al. [Enck et al., 2008], which ties user files
to particular applications. Our system-centric model covers
system and user files, based on the observation that both
system programs and applications satisfy some general ways
in which they use OS resources.

7.4 Virtualization
The idea of utilizing a virtual machine monitor to perform
sophisticated run-time analyses, with the guarantee that the
results cannot be tampered by a malicious attacker, has already
been widely explored in the literature. Garfinkel et al. were
the first to propose to use a VMM to perform OS-aware intro-
spection [T. and M, 2003]. Other researchers proposed to use a
VMM for protecting the guest OS from attacks by monitoring
its execution, with a software-based VMM [R. et al., 2008]
that leveraged on hardware support for virtualization [A. et al.,
2007]. Similar ideas were also proposed by other authors [B.D.
et al., 2008], [M. et al., 2009]. In [X. et al., 2008] Chen et
al. described a solution to protect applications’ data even in
the presence of a compromised operating system. Recently,
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Vasudevan et al. proposed XTREC, a lightweight framework to
record securely the execution control flow of code running in
an untrusted system [A. et al., 2010]. Finally, our Hypervisor
is lightweight version of HyperDbg [Fattori et al., 2010] and
it can provide a secure layer for checking the AccessMiner
Policies. It also provided a manage mode where the policies
can be loaded in secure way from the network so we can
assure that the attacker cannot modify them.

8 CONCLUSIONS

In this paper we present AccessMiner, a system-centric ap-
proach to model the activities of benign programs and use
these models to detect the presence of malicious applications.
In particular, we discuss the general algorithm and the imple-
mentation of the AccessMiner detector as a custom system
hypervisor. We also discuss the accuracy of our approach and
the overhead introduced by our hypervisor. The results of our
experiments show that our system could be deployed in a real
environment, with only a limited impact on the performance
of the system.

REFERENCES

[A. et al., 2010] A., P., V., G., and A., V. (2010). XTREC: secure real-
time execution trace recording and analysis on commodity platforms. In
Technical report, Carnegie Mellon University (2010).

[A. et al., 2007] A., S., M., L., N., Q., and A., P. (2007). SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity
OSes. In Proceedings of the ACM Symposium on Operating Systems
Principles.

[AMD, Inc., ] AMD, Inc. AMD Virtualization. www.amd.com/virtualization.
[Anubis, ] Anubis. Anubis. http://anubis.iseclab.org.
[Bailey et al., 2007] Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M.,

Jahanian, F., and Nazario, J. (2007). Automated classification and analysis
of internet malware. In Kruegel, C., Lippmann, R., and Clark, A., editors,
Proceedings of the 10th International Symposium on Recent Advances in
Intrusion Detection (RAID’07), volume 4637 of Lecture Notes in Computer
Science, pages 178–197, Gold Goast, Australia. Springer-Verlag.

[Bayer et al., 2009] Bayer, U., Comparetti, P. M., Hlauschek, C., Kruegel,
C., and Kirda, E. (2009). Scalable, behavior-based malware clustering. In
Proceedings of the 16th Annual Network and Distributed System Security
Symposium (NDSS’09), San Diego, CA, USA.

[B.D. et al., 2008] B.D., P., M., C., M., S., and W., L. (2008). Lares:
An Architecture for Secure Active Monitoring Using Virtualization. In
Proceedings of the IEEE Symposium on Security and Privacy.

[Bruschi et al., 2006] Bruschi, D., Martignoni, L., and Monga, M. (2006).
Detecting self-mutating malware using control-flow graph matching. In
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