
MISHIMA: Multilateration of Internet hosts
hidden using malicious fast-flux agents

(Short Paper)

Greg Banks, Aristide Fattori, Richard Kemmerer,
Christopher Kruegel, and Giovanni Vigna

University of California, Santa Barbara
{nomed,joystick,kemm,chris,vigna}@cs.ucsb.edu

Abstract. Fast-flux botnets are a growing security concern on the Inter-
net. At their core, these botnets are a large collection of geographically-
dispersed, compromised machines that act as proxies to hide the location
of the host, commonly referred to as the “mothership,” to/from which
they are proxying traffic. Fast-flux botnets pose a serious problem to
botnet take-down efforts. The reason is that, while it is typically easy to
identify and consequently shut down single bots, locating the mothership
behind a cloud of dynamically changing proxies is a difficult task.
This paper presents techniques that utilize characteristics inherent in
fast-flux service networks to thwart the very purpose for which they are
used. Namely, we leverage the geographically-dispersed set of proxy hosts
to locate (multilaterate) the position of the mothership in an abstract n-
dimensional space. In this space, the distance between a pair of network
coordinates is the round-trip time between the hosts they represent in
the network. To map network coordinates to actual IP addresses, we
built an IP graph that models the Internet. In this IP graph, nodes
are Class C subnets and edges are routes between these subnets. By
combining information obtained by calculating network coordinates and
the IP graph, we are able to establish a group of subnets to which a
mothership likely belongs.

1 Introduction

In recent years, there has been a dramatic change in the goals and modes of oper-
ation of malicious hackers. As hackers have realized the potential monetary gains
associated with Internet fraud, there has been a shift from “hacking for fun” [1]
to “hacking for profit” [2]. As part of this shift, cybercriminals realized that it
was necessary to create large-scale infrastructures to provide services (e.g., spam
delivery) and protect important parts of their operations from identification and
countermeasures. To this end, botnets and fast-flux networks were introduced.

Botnets are sets of compromised hosts (usually thousands) that are under the
control of an attacker, who can then use them to provide services and perform
distributed attacks. Hosts in a botnet can also be used as reverse web proxies
to serve the content of malicious web sites. In this case, the proxying bots are
usually organized as a fast-flux service network [3].



In a fast-flux service network, the hosts associated with a domain name are
constantly changed to make it harder to block the delivery of the malicious web
pages and effectively hide the address of the actual web server, often referred to
as the “mothership.” A number of countermeasures against botnets have been
proposed, but none of these is able to address the problem of identifying the
location of mothership hosts with good approximation.

In this paper, we present a novel approach that utilizes characteristics in-
herent in fast-flux service networks to thwart the very purpose for which they
are used. Namely, we leverage the geographically-dispersed set of proxy hosts in
order to multilaterate (more commonly, and mistakenly, referred to as “triangu-
late”) the position of the mothership host in an abstract n-dimensional space.
In this space, the distance between a pair of coordinates is the round-trip time
between the hosts they represent in the network. Unfortunately, calculating the
network coordinates of a host does not give any information about its IP address.
To overcome this limitation, we built an IP graph that models the Internet. In
this graph, nodes represent Class C subnets and edges represent routes between
these subnets. This IP graph is then used to map network coordinates to a set
of likely IP addresses. This leads to a significant reduction of the effort needed
to shutdown a fast-flux botnet’s mothership.

This paper makes the following two main contributions: (i) we introduce a
novel approach to compute the location of a mothership host that is hidden
behind a fast-flux service network; (ii) we create an IP graph representing a
model of the Internet topology, which allows us to map network coordinates to
actual Class C subnets.

2 Background and Related Work

Given the continuous rise in malicious botnet activity, there has been a significant
amount of recent work both in botnet analysis and botnet mitigation. Analysis
efforts [2, 4, 5] have attempted to quantify the number and sizes of botnets. As
for mitigation, researchers examined the life cycle of bots [6] and, in particular,
the command and control (C&C) channels that are used to exchange information
between a botmaster and the infected machines.

2.1 Fast-Flux Service Networks

A particularly troubling development related to botnets is the advent of fast-flux
service networks. In a nutshell, fast-flux service networks utilize existing botnets
to hide a particular resource or server. This server is generally a host to phishing
scams or malicious web content that attempts to infect the end user. Two types
of fast-flux networks have been observed in the wild: single-flux and double-flux.
In single-flux networks, the DNS A records for a domain are constantly updated
with the addresses of bots that act as reverse proxies for the content associated
with the domain. Double-flux networks add a second layer of redirection to this
scheme. In these networks, the NS records associated with the authoritative name
servers for a malicious domain are also short-lived and rotated.



Much of the work involving fast-flux networks has been related to detection
and understanding. Holz et al. identify the issue and suggest metrics for de-
tection [7]. The authors characterize fast-flux service networks and introduce a
function to calculate the “flux-score” for a domain. Similarly, Passerini et al.

developed a tool, called FluXOR, to detect and monitor fast-flux service net-
works [8]. Nazario et al. use a globally distributed set of honeypots to collect
suspect domains, which are then analyzed according to a set of heuristics and
identified as being hosted by a fast-flux service network or not [9].

Even though the approaches mentioned above represent a fundamental step
toward understanding and detecting fast-flux networks, none of them is able to
determine or characterize the location of a mothership. Thus, they assume that
the fast-flux service network provides an impenetrable cloaking mechanism to
the mothership host.

2.2 Network Coordinates

While fast-flux networks are able to hide much about the mothership, they still
expose round-trip times and provide a large number of beacons (e.g., bots acting
as reverse proxies) through which to communicate. Similar prerequisites (i.e.,
beacons and a distance metric) are necessary for systems dealing with location
estimation, such as GPS, triangulation, and multilateration, all of which have
an Internet counterpart: network coordinate systems.

Techniques dealing with network coordinate systems were first developed to
predict Internet latencies. One of the early approaches to predict latency between
hosts was a service called IDMaps [10]. The problem with this method is that
it requires an additional underlying infrastructure for which the end user is just
a client. Ng and Zhang proposed a different method, called global network po-
sitioning (GNP), by which Internet hosts interested in latency prediction would
interactively participate to create a model of the network as a 3-dimensional Eu-
clidean space [11]. Given this model, each host in the network is assigned a set of
coordinates. Latency estimation then becomes a simple calculation of Euclidean
distance given the coordinates of two hosts. In 2004, Dabek et al. developed a
network coordinate system called Vivaldi, which is based on GNP [12]. Vivaldi
describes the network as a series of nodes connected by springs and tries to min-
imize the energy in this network. In this way, each node in the network has a
push or pull effect on neighboring nodes and the system settles or converges on
a set of coordinates that accurately predicts latencies. Costa et al. developed the
PIC algorithm around the same time as Vivaldi [13]. PIC also builds on GNP
using the same idea of a multi-dimensional space to model network latencies.

A concurrent work by Castelluccia et al. was developed simultaneously to
MISHIMA [14]. The technique presented in this work aims at geolocalizing prox-
ied services, with a particular focus on fast-flux hidden servers. Their approach
is somewhat similar to ours, as they also use multilateration of Internet hosts,
but we believe their technique to be both less precise and less complete. The
reason is that they can only give an idea of the geographical location of a fast-
flux server with an approximation of 100 km2 or more. This makes it difficult
to actually identify the network location (IP address) of a host and the network
carrier responsible for take-down.



3 Approach

We developed a system, called MISHIMA (Multilateration of Internet hostS
Hidden usIng Malicious fast-flux Agents), to actively calculate the coordinates
of motherships associated with various domains that have been identified as
being hosted by fast-flux service networks. Our main goal in doing this is to
determine the location of a mothership, where by “location,” we mean a Class
C subnet (or a set of them) to which the mothership likely belongs.

Our approach to fast-flux mothership multilateration works in three steps: In
the first step, we make use of existing network coordinate calculation techniques
to determine the coordinates of the various proxies, or bots, that are part of
a proxy network for a particular fast-flux domain. The coordinates of a proxy
(or, in general, any host) represent a point in an n-dimensional Euclidean space
where the measure of distance between hosts is their round-trip time (RTT). In
the second step, we utilize three characteristics of fast-flux service networks in
order to multilaterate the position of the mothership that is used to host the
actual content for a domain. In the third step, we use network coordinates and
attempt to map them to IP addresses, using a network model of the Internet.

3.1 Calculation of Proxy Network Coordinates

We calculate the network coordinates for the proxies of a fast-flux service network
using the algorithm by Costa et al. [13], while incorporating ideas by Gummadi
et al. [15] and Ledlie et al. [16]. Costa et al. provide a general algorithm to
calculate the network coordinates for hosts in an n-dimensional space given the
measurement of actual round-trip times between hosts. The goal of the coor-
dinate system is to be able to estimate the latency between two hosts whose
coordinates are known, by calculating the Euclidean distance between the coor-
dinates. This means that two nodes who lie close to each other in the coordinate
space are likely in the same network, while those that lie far away from each
other are likely in different networks.

Network coordinate systems require a large number of geographically-dispersed
beacons to perform well [11]. A legitimate resource available to the research com-
munity that fits these characteristics is PlanetLab. Therefore, we make use of
approximately 150-200 PlanetLab nodes distributed throughout North America,
Europe, and Asia at any given time.

For our system, we need to know the coordinates of these beacons as well as
their distance from a target (which we get using various probing techniques). We
have created a centralized database containing a large number of coordinates.
This allows us to do a simple linear scan over the appropriate nodes to find the
closest ones. In the case that we have no coordinates for a particular target, we
have to estimate them before we can actually find their closest nodes. To this
end, we first use random nodes (beacons) to estimate the coordinates of the
target, and then scan the database of known coordinates to find beacons that
are close to it.

In addition to having a large number of geographically-dispersed beacons,
we also need a supply of malicious domains to work with. To this end, we utilize



two sources: the Arbor Networks Atlas repository [17] and a locally-collected
repository of domains harvested from the .COM zone file. The DNS resource
records for each domain are checked against a simple set of heuristics throughout
the process to determine whether they are still hosted by fast-flux networks. The
heuristics used are as follows:

– There must be at least nine distinct A records associated with the domain.
– The TTL associated with each record must be less than 1,000 seconds.
– The percentage of A records from the same /16 must be less than 70.
– The NS records for a query must not belong to a small blacklist of those used

to “park” domains.

Unlike most network coordinates studies, we have very specific constraints on
our ability to probe the machines whose coordinates we want to calculate. Tradi-
tionally, latency measurements are performed using ICMP echo probes or some
application-level probe (usually UDP-based), in the case that ICMP probes are
filtered. For our purposes, we use directed TCP-based application-level probes
in the case of both fast-flux agents and mothership network coordinate calcula-
tions, and ICMP-based echo probes for our PlanetLab (beacon) nodes. In fact,
we have to use TCP-based probes in the case of the proxy agents for two reasons:
first, since most of the fast-flux agents reside in residential and DHCP assigned
networks, ICMP ping probes are filtered; second, we need a way to measure the
round-trip-time from the proxy node to the mothership. To calculate the RTT
to the mothership, we measure the RTT to the proxy as the time difference from
the outgoing TCP packet containing the GET request to its respective ACK.
The RTT from the proxy to the mothership is the time difference between the
outgoing GET request and the incoming HTTP response minus the RTT to the
proxy node.

To calculate the network coordinates for a target given the RTTs extracted
from our probes, we use the Nelder-Mead simplex method using the sum of the
squared relative errors between the actual distance and the predicted distance
as the objective function to be minimized.

3.2 Mothership Network Coordinate Calculation

We calculate the network coordinates for a mothership by leveraging a side-
effect of the first step. More precisely, in calculating the network coordinates for
a fast-flux proxy node we are also able to estimate the RTT to the mothership
from the proxy. Since we can estimate the RTT from a proxy to the mothership
and we are able to calculate the coordinates of hundreds, or even thousands, of
proxies associated with a particular mothership, we satisfy the two prerequisites
for multilateration: (1) a significant number of geographically-dispersed beacon
nodes, and (2) distance measurements from those beacons to the node whose
coordinates are unknown. By doing this, we can use the algorithm by Costa
et al. [13] using these proxies and their RTTs as input.

We need to calculate the coordinates for at least sixteen proxies before we
attempt to calculate the coordinates of a mothership. In our implementation, we



consider a domain ready for mothership multilateration when we have calculated
the coordinates for at least 100 proxies. This gives us enough beacons to calculate
at least eight coordinates for the mothership using the hybrid approach in [13],
the flexibility to choose a varied set of beacons, and the opportunity to discard
outliers.

3.3 IP Graph

Even if it is possible to determine the network coordinates of a mothership,
this information does not allow one to directly determine the corresponding IP
address. Therefore, we need a way to map the network coordinates of a host
to its IP address (or a set of likely IP addresses). To do this, we first build an
IP graph. In this graph, nodes are Class C subnets and edges represent routes
between these subnets.

To build the IP graph, we made use of the CAIDA topology datasets [18].
This data is generated through the use of geographically-distributed machines
that continuously calculate routes toward a large set of hosts, and it is made
available daily, thus granting very up-to-date data. To create our graph, we
parse all CAIDA data but we take into consideration only Class C subnets, as
routing information within the same subnet is too fine-grained for our purposes.

Once the IP graph has been built, we pre-compute the network coordinates
for a large number of IP addresses on the Internet. Then, given the network
coordinates of a particular machine of interest, we can find all nodes in the IP
graph that have close (pre-computed) network coordinates. After that, we use
the IP graph (and its edges) to look for other nodes that are close. These nodes
represent likely Class C networks where the machine of interest is located.

More precisely, the algorithm works as follows: We first calculate the set K

of the n nearest networks to the target t, of which we only know the network
coordinates NC. To determine which networks are in this set, we calculate the
Euclidean distance between every node in the IP graph G and NC, and we pick
the n closest nodes. Then, for each k ∈ K, we compute the set of nodes that
are reachable from k via a maximum number d of hops in G, and we call these
sets of close nodes candidate sets Ck. Finally, we create the set K ′ that contains
only the nodes that appear in a certain percentage p of the candidate sets Ck

generated during the previous step. Of course, K ′ will contain some nodes that
are far away from t. We prune these nodes by eliminating all nodes that are
farther away from t than a given threshold.

In Figure 1, we show a simple example of this technique applied to a small
partition of the graph. Assume t is our target, d = 2, p = 1 (100%), and the set
of closest nodes, based only on the Euclidean distance computed from network
coordinates, is K := {a, b, c}. As we explained before, we take every element
of K, and, for each element, we find all the nodes in G that are a maximum
number of hops d away. This results in the new sets Ca, Cb, and Cc, marked
in the example with a dotted, a full, and a dashed line, respectively. We then
compute the intersection of these three sets. In these example, the result is the
set K ′ := {a, t}. In real-world cases, the sets Ck can become quite large. For this
reason, as we will show in Section 4, a choice of p < 1 leads to better results.



a

tb

c

Ca

Cb

Cc

Fig. 1. From Network Coordinates to Subnet(s)

4 Experimental Results

In a first test, we picked a set of known hosts (targets). We then computed
their network coordinates and evaluated the effectiveness of our approach to
map these network coordinates back to IP addresses. More precisely, we applied
our technique to eight distinct hosts, using different settings for p (the fraction
of candidate sets in which a Class C network must appear before it is reported
in the results). A larger value of p results in fewer networks that are reported
(that is, the result set is tighter). On the other hand, it is also more likely that
the true location of a host is missed. All experiments have been performed with
n = 10, d = 2, and threshold = 10.

Target p Intersection Found Target p Intersection Found

128.111.4.0 100% 2 X 159.149.153.0 100% 0
128.111.4.0 50% 75 X 159.149.153.0 50% 2
128.111.4.0 30% 75 X 159.149.153.0 30% 31 X

128.111.4.0 10% 75 X 159.149.153.0 10% 31 X

114.108.44.0 100% 0 99.54.140.0 100% 0
114.108.44.0 50% 6 99.54.140.0 50% 0
114.108.44.0 30% 54 X 99.54.140.0 30% 0
114.108.44.0 10% 77 X 99.54.140.0 10% 1

85.17.143.0 100% 1 114.108.82.0 100% 0
85.17.143.0 50% 48 X 114.108.82.0 50% 6
85.17.143.0 30% 48 X 114.108.82.0 30% 71 X

85.17.143.0 10% 82 X 114.108.82.0 10% 71 X

59.136.176.0 100% 0 93.160.107.1 100% 0
59.136.176.0 50% 149 X 93.160.107.1 50% 2
59.136.176.0 30% 196 X 93.160.107.1 30% 10
59.136.176.0 10% 222 X 93.160.107.1 10% 115 X

Table 1. Real-World Experiments



In Table 1, we report the results of our experiments. For each target host, we
show the percentage of candidate sets to which a node (network) must belong to
be reported in the detection results (column p) as well as the number of Class
C networks that appear in the result set (column intersection). We also report
whether the true target was part of the result set.

From Table 1, we can see that a value of p = 30 seems to offer a good trade-
off between detection and precision. That is, in 6 out of 8 cases, the true location
of the network was detected, and the number of potential Class C networks is
typically less than a hundred. It is interesting to note that we are not able to find
any non-empty intersection (except for p = 10%) when looking for the target
subnet 99.54.140.0/24. We investigated the reason for this, and we discovered
that we have very little knowledge of the network coordinates of nodes close to
this subnet. Because of this, the elements belonging to the set of closest nodes
are at a medium distance of 30 from the target, while in the other successful
cases we have a medium distance between 0.5 and 8. Therefore, knowing the
network coordinates of hosts in the neighborhood of the target is a prerequisite
to be able to determine a set of nodes to which the target likely belongs.

We also performed our tests with different parameter settings for the number
of initial nodes n, the distance d, and the threshold t. For space reasons, we can
discuss these results only briefly. When using d = 3 instead of d = 2, the results
remain similar, but the precision starts to decrease and the result sets grow.
Also, changing the initial number of near nodes n does not improve the results
significantly. The most interesting parameter was the threshold value. Indeed,
by using a threshold smaller than 10, we can reduce the size of the intersection
considerably. For example, with a threshold = 2, we can prune the intersection
to two nodes, or even to one, and still find our target. However, we decided to use
a more conservative approach (threshold = 10) since, in the case of real-world
motherships, we have to take into account noise.

We also investigated how many different Autonomous Systems (AS) cover
the subnets in the resulting intersection. Our findings are encouraging. In fact,
in most of our experiments, all of the subnets contained in the intersection be-
long to the same AS. This can help in obtaining a more precise identification of
the mothership, as, once we discover the AS to which the mothership belongs,
it could be possible to start a collaboration with the corresponding ISP or insti-
tution to analyze network traffic or to perform scanning in the AS network in
order to detect the mothership with greater precision.

To demonstrate the effectiveness of our approach on a real-world botnet, we
decided to analyze the then-active Waledac botnet. To do this, we fed four fast-
flux domains associated with this botnet to MISHIMA and we identified 335
hosts that are acting as proxies for its mothership. Next, we calculated their
network coordinates and ran the IP detection algorithm. This yielded 48 Class
C subnets where the mothership was likely located. To confirm our result, we
set up a honeypot Windows XP machine and infected it with the latest sample
of the malware associated with Waledac. To get the most up to date sample,
we retrieved it directly from botnet hosts that are serving it. By doing this, we
were able to infiltrate the botnet and discover the mothership IP address. We
were able to successfully confirm that the actual mothership was in one of the



48 networks that we found. We want to point out that the knowledge of the IP
address of the mothership has been used only to validate our results and not,
in any way, to determine the set where the mothership might have been located.

5 Attacks & Shortcomings

There are several ways in which a knowledgeable attacker might try to prevent
the correct identification of the mothership’s location.

First, fast-flux proxies could artificially delay the HTTP responses that we
require for our probes, thus invalidating our coordinate calculations. If this delay
were a static value, our coordinates would simply represent a point far away in
the coordinate space from the actual coordinates. If the delay was random, we
would only be able to calculate the general area where the mothership would
likely lie. Over the course of our measurements, we did not see anything that
indicated this behavior was taking place.

Second, since we are heavily reliant on a relatively large number of probes
to each beacon, we cannot deal with proxies that recognize this behavior and
cease to proxy connections. We saw this behavior with some domains (e.g., a
request to a domain from the same IP address within a few-minutes period
would only return the malicious web page for the first several requests). The
most likely method to mitigate this attack would be to throttle our probes to
an appropriate speed.

Third, there are several network topologies that would confuse our measure-
ments and invalidate the coordinates we calculate. If the proxies are set up to
load-balance requests among a number of motherships, we will most likely cal-
culate incorrect, or at least inconsistent, coordinates. Currently, we assume that
there is exactly one mothership. If this is not the case, the RTTs associated with
our probes will conflict, and our results will likely resemble those in the case of
random artificial delay being inserted into our probes. Even though it may be
possible to identify and cluster RTTs in an effort to identify those that were
destined for a different mothership, we did not see results that indicated that
load-balancing was being performed.

6 Conclusions

We have presented MISHIMA, a system that helps to automatically identify and
cluster fast-flux hosted domains by their respective motherships. By integrating
our knowledge of network coordinates and of the Internet topology, we are able to
determine a set of subnets to which the mothership likely belongs. Last but not
least, MISHIMA goes beyond previous heuristic-based approaches to mothership
clustering and makes use of more robust characteristics at the network and
application level, allowing it to identify motherships in spite of the presence
of different fast-flux service networks and disparate web content. In conclusion,
we believe that MISHIMA will constitute a useful contribution to the efforts
undertaken to counteract the threat of fast-flux botnets.



References

1. Bailey, M., Cooke, E., Jahanian, F., Watson, D., Nazario, J.: The Blaster Worm:
Then and Now. IEEE Security & Privace (2005) 26–31

2. Cooke, E., Jahanian, F., McPherson, D.: The Zombie Roundup: Understanding,
Detecting, and Disrupting Botnets. In: Proceedings of the USENIX SRUTI Work-
shop. (2005) 39–44

3. The Honeynet Project: Know Your Enemy: Fast-Flux Service Networks. www.

honeynet.org/book/export/html/130 (2007)
4. Freiling, F., Holz, T., Wicherski, G.: Botnet Tracking: Exploring a Root-Cause

Methodology to Prevent Distributed Denial-of-Service Attacks. In: 10th European
Symposium On Research In Computer Security. (2005)

5. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A Multifaceted Approach to
Understanding the Botnet Phenomenon. In: 6th ACM SIGCOMM Internet Mea-
surement Conference (IMC). (2006)

6. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog Correlation. In: Proceedings of the
16th USENIX Security Symposium. (2007)

7. Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and detecting fast-flux
service networks. In: Network & Distributed System Security Symposium. (2008)

8. Passerini, E., Paleari, R., Martignoni, L., Bruschi, D.: FluXOR: Detecting and
Monitoring Fast-Flux Service Networks. Lecture Notes in Computer Science (2008)

9. Nazario, J., Holz, T.: As the Net Churns: Fast-Flux Botnet Observations. In:
Conference on Malicious and Unwanted Software (Malware’08). (2008)

10. Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: IDMaps: A
Global Internet Host Distance Estimation Service. IEEE/ACM TRANSACTIONS
ON NETWORKING 9(5) (2001) 525

11. Ng, T., Zhang, H.: Towards global network positioning. In: Proceedings of the 1st
ACM SIGCOMM Workshop on Internet Measurement, ACM New York, NY, USA
(2001) 25–29

12. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network
coordinate system. ACM SIGCOMM Computer Communication Review 34(4)
(2004) 15–26

13. Costa M. and Castro M. and Rowstron R. and Key P.: PIC: Practical Internet Co-
ordinates for Distance Estimation. In: Proceedings of the International Conference
on Distributed Computing Systems. (2004) 178–187

14. C. Castelluccia, D. Kaafar, P., Perito, D.: Geolocalization of Proxied Services and
its Application to Fast-Flux Hidden Servers. In: 9th ACM SIGCOMM Internet
Measurement Conference (IMC). (2009)

15. Gummadi, K., Saroiu, S., Gfibble, S.: King: Estimating Latency between Arbi-
trary Internet End Hosts. In: Proceedings of SIGCOMM Workshop on Internet
Measurment. (2002) 5–18

16. Ledlie, J., Gardner, P., Seltzer, M.: Network Coordinates in the Wild. In: Pro-
ceedings of USENIX NSDI. (April 2007)

17. Arbor Networks: Arbor Atlas http://atlas.arbor.net.
18. Y. Hyun, B. Huffaker, D. Andersen, E. Aben, C. Shannon, M. Luckie, and kc claffy:

The CAIDA IPv4 Routed /24 Topology Dataset. http://www.caida.org/data/

active/ipv4 routed 24 topology dataset.xml (07/2009-09/2009)


