
Dynamic and Transparent Analysis of Commodity
Production Systems

Aristide Fattori1 Roberto Paleari1 Lorenzo Martignoni2

Mattia Monga1

1Università degli Studi di Milano 2University of California, Berkeley

25th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’10)



How to debug a device driver?

Kernel debugger VMM-based debugger

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 2



How to debug a device driver?

Kernel debugger

VMM-based debugger

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 2



How to debug a device driver?

Kernel debugger VMM-based debugger

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 2



How to analyze run-time properties of a system?

Properties we would like to monitor:

Creation of new processes (or threads)

Execution of system calls

Execution of kernel/user functions

Access to hardware devices

Memory access

. . .

Possible applications

Profiling

Tracing

Debugging

Dynamic
instrumentation

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 3



Kernel-based solutions

Require the installation of specific hooks in the kernel
The analysis tool is implemented as a kernel module
To analyze kernel-level code, these approaches leverage another
kernel-level module . . .

. . . it is like a dog chasing its tail!

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 4



Kernel-based solutions

Require the installation of specific hooks in the kernel
The analysis tool is implemented as a kernel module
To analyze kernel-level code, these approaches leverage another
kernel-level module . . .

. . . it is like a dog chasing its tail!

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 4



VMM-based solutions

The analyzer leverages VM-introspection techniques

The target system must be already running inside a VM!

System-level programming inside a VM is not so easy . . .

Have you ever tried to use your iPod through a VM?

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 5



VMM-based solutions

The analyzer leverages VM-introspection techniques

The target system must be already running inside a VM!

System-level programming inside a VM is not so easy . . .

Have you ever tried to use your iPod through a VM?

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 5



Contributions

A framework to perform dynamic system-level analyses
of commodity production systems

Features

1. Does not require any native support for the analysis
(can be used on commodity or closed-source systems)

2. Supports the analysis of running systems
(the target must not be rebooted)

3. User- and system-level code cannot detect nor affect the
analysis infrastructure

4. Guarantees isolation of the analysis tools running on its top
(a buggy tool does not cause the target system to crash)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 6



Contributions

A framework to perform dynamic system-level analyses
of commodity production systems

Features

1. Does not require any native support for the analysis
(can be used on commodity or closed-source systems)

2. Supports the analysis of running systems
(the target must not be rebooted)

3. User- and system-level code cannot detect nor affect the
analysis infrastructure

4. Guarantees isolation of the analysis tools running on its top
(a buggy tool does not cause the target system to crash)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 6



How?

Exploit hardware support for virtualization

A running system is migrated into a virtual machine on-the-fly

The analysis framework runs at the hypervisor privilege level
(it is more privileged than the OS and completely isolated)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 7



A glimpse at hardware-assisted virtualization (Intel VT-x)

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 8



A glimpse at hardware-assisted virtualization (Intel VT-x)

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 8



A glimpse at hardware-assisted virtualization (Intel VT-x)

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

The OS needs not to be modified

The hardware guarantees transparency & isolation

Minimal overhead

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 8



A glimpse at hardware-assisted virtualization (Intel VT-x)

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

Hypervisor Kernel/App

Entry Exit Entry

An exit/entry event causes the CPU to save the
state of the guest/host inside the VMCS

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 8



A glimpse at hardware-assisted virtualization (Intel VT-x)

AppApp App

Kernel

R
3

R
0

AppApp App

Kernel

Hypervisor

R
3

R
0

R
o

o
t

m
o

d
e

Hypervisor Kernel/App

Entry Exit Entry

The events that trigger an exit to root mode
can be configured dynamically

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 8



Overview of the framework

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Non-root mode

Root mode

Framework

Analysis
toolE

xi
t

In
sp

ec
t

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 9



Overview of the framework

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Non-root mode

Root mode

Framework

Analysis
tool

E
xi

t
In

sp
ec

t

The framework is installed as the target system runs and
is completely separated from the analyzed OS

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 9



Overview of the framework

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Non-root mode

Root mode

Framework

Analysis
tool

E
xi

t
In

sp
ec

t

The analyzed OS needs not to be modified at all
(i.e., the approach can be applied to closed-source OSes)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 9



Overview of the framework

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Non-root mode

Root mode

Framework

Analysis
tool

E
xi

t
In

sp
ec

t

The analysis tool runs in an isolated execution environment
(a defect in the tool does not affect the stability of the OS)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 9



Overview of the framework

Operating system kernel

User mode

Kernel mode

User
process

User
process

Non-root mode

Root mode

Framework

Analysis
tool

Non-root mode

Root mode

Framework

Analysis
tool

E
xi

t
In

sp
ec

t

At the end of the analysis, the infrastructure
can be removed on-the-fly

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 9



Architecture

7. Interrupt

Event gate Trap gate API

Analysis tool

1
.

E
xi

t

2
.

N
o

ti
fi

ca
ti

o
n

3. API call
6. Exception

4. API request

4
a.

In
sp

ec
t/

m
an

ip
u

la
te

4b. Request event notification

5. Recover information about events

Non-root mode

Root mode

User mode

Kernel mode

Hardware

Framework

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 10



Architecture

7. Interrupt

Event gate Trap gate API

Analysis tool

2
.

N
o

ti
fi

ca
ti

o
n

3. API call
6. Exception

4. API request

4
a.

In
sp

ec
t/

m
an

ip
u

la
te

4b. Request event notification

5. Recover information about events

Non-root mode

Root mode

User mode

Kernel mode

Hardware

Framework

1
.

E
xi

t

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 10



Architecture

7. Interrupt

Event gate Trap gate API

Analysis tool

1
.

E
xi

t
3. API call
6. Exception

4. API request

4
a.

In
sp

ec
t/

m
an

ip
u

la
te

4b. Request event notification

5. Recover information about events

Non-root mode

Root mode

User mode

Kernel mode

Hardware

Framework

2
.

N
o

ti
fi

ca
ti

o
n

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 10



Architecture

7. Interrupt

Event gate Trap gate API

Analysis tool

1
.

E
xi

t

2
.

N
o

ti
fi

ca
ti

o
n

4. API request

4
a.

In
sp

ec
t/

m
an

ip
u

la
te

4b. Request event notification

5. Recover information about events

Non-root mode

Root mode

User mode

Kernel mode

Hardware

Framework

3. API call
6. Exception

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 10



Architecture

7. Interrupt

Event gate Trap gate API

Analysis tool

1
.

E
xi

t

2
.

N
o

ti
fi

ca
ti

o
n

3. API call
6. Exception 4

a.
In

sp
ec

t/
m

an
ip

u
la

te

4b. Request event notification

5. Recover information about events

Non-root mode

Root mode

User mode

Kernel mode

Hardware

Framework
4. API request

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 10



Architecture

7. Interrupt

Event gate Trap gate API

Analysis tool

1
.

E
xi

t

2
.

N
o

ti
fi

ca
ti

o
n

3. API call
6. Exception

4. API request

5. Recover information about events

Non-root mode

Root mode

User mode

Kernel mode

Hardware

Framework

4
a

.
In

sp
ec

t/
m

a
n

ip
u

la
te

4b. Request event notification

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 10



Architecture

7. Interrupt

Event gate Trap gate API

Analysis tool

1
.

E
xi

t

2
.

N
o

ti
fi

ca
ti

o
n

3. API call
6. Exception

4. API request

4
a.

In
sp

ec
t/

m
an

ip
u

la
te

4b. Request event notification

Non-root mode

Root mode

User mode

Kernel mode

Hardware

Framework

5. Recover information about events

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 10



Architecture

7. Interrupt

Event gate Trap gate API

Analysis tool

1
.

E
xi

t

2
.

N
o

ti
fi

ca
ti

o
n

4. API request

4
a.

In
sp

ec
t/

m
an

ip
u

la
te

4b. Request event notification

5. Recover information about events

Non-root mode

Root mode

User mode

Kernel mode

Hardware

Framework

3. API call
6. Exception

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 10



Architecture

7. Interrupt

Event gate Trap gate API

Analysis tool

1
.

E
xi

t

2
.

N
o

ti
fi

ca
ti

o
n

3. API call
6. Exception

4. API request

4
a.

In
sp

ec
t/

m
an

ip
u

la
te

4b. Request event notification

5. Recover information about events

Non-root mode

Root mode

User mode

Kernel mode

Hardware

Framework

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 10



Which events can be intercepted?

Events cause exits to root mode

All the events exit conditionally

Conditions are expressed as boolean conditions
(process name = “notepad.exe′′ ∧ syscall name = “NtReadFile′′)

Native events vs high-level events

Traced directly through
the hardware

Very low-level operations
(e.g., CPU exception)

Traced through
low-/high-level events

High-level operations
(e.g., Return from function)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 11



Which events can be intercepted?

Events cause exits to root mode

All the events exit conditionally

Conditions are expressed as boolean conditions
(process name = “notepad.exe′′ ∧ syscall name = “NtReadFile′′)

Native events vs high-level events

Traced directly through
the hardware

Very low-level operations
(e.g., CPU exception)

Traced through
low-/high-level events

High-level operations
(e.g., Return from function)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 11



A summary of the events

Event Exit cause Native exit

ProcessSwitch Change of page table address
√

Exception Exception
√

Interrupt Interrupt
√

BreakpointHit Debug or page fault except.
WatchpointHit Page fault except.
FunctionEntry Break on function entry point
FunctionExit Break on return address
SyscallEntry Break on syscall entry point
SyscallExit Break on return address
IOOperationPort Port read/write

√

IOOperationMmap Watchpoint on device memory

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 12



High-Level Events

Two main high-level events: watchpoints and breakpoints

Other high-level events are traced through the previous ones
(e.g., FunctionEntry, SyscallEntry, . . . )

How to set watchpoints and breakpoints
from root mode?

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 13



High-Level Events

Two main high-level events: watchpoints and breakpoints

Other high-level events are traced through the previous ones
(e.g., FunctionEntry, SyscallEntry, . . . )

How to set watchpoints and breakpoints
from root mode?

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 13



High-Level Events

Two main high-level events: watchpoints and breakpoints

Other high-level events are traced through the previous ones
(e.g., FunctionEntry, SyscallEntry, . . . )

How to set watchpoints and breakpoints
from root mode?

Watchpoints

No native support from VT-x, few hardware watchpoints shared
with the guest

Implemented by protecting memory pages and trapping access
exceptions

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 13



High-Level Events

Two main high-level events: watchpoints and breakpoints

Other high-level events are traced through the previous ones
(e.g., FunctionEntry, SyscallEntry, . . . )

How to set watchpoints and breakpoints
from root mode?

Breakpoints

No native support from VT-x, few hardware breakpoints shared
with the guest

Software breakpoints are efficient, but can be detected
(the byte at the breakpoint address must be modified)

Alternatively, breakpoints can be implemented through
watchpoints (transparent but not very efficient)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 13



State inspection and manipulation

CPU registers

Inspection & manipulation is trivial

Guest registers are stored inside the VMCS

Memory

Memory inspection & manipulation requires MMU
virtualization

We mimic the behavior of the hardware MMU to translate
VA → PHY and map the physical page

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 14



OS-dependent interface

OS-independent analysis can be uncomfortable
(e.g., refer to a process by means of its PT base address)

OS-dependent APIs can ease the analysis
(e.g., refer to a process through its name)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 15



OS-dependent interface

OS-independent analysis can be uncomfortable
(e.g., refer to a process by means of its PT base address)

OS-dependent APIs can ease the analysis
(e.g., refer to a process through its name)

Name Description

GetFuncAddr(n ) Return the address of the function n
GetFuncName(a ) Return the name of the function at address a
GetProcName(p ) Get the name of process with page directory base address p
GetProcPID(p ) Get the PID of process with page directory base address p
GetProcLibs(p ) Enumerate DLLs loaded into process p
GetProcStack(p ) Get the stack base for process p
GetProcHeap(p ) Get the heap base for process p
GetProcList() Enumerate processes
GetDriverList() Enumerate device drivers

Current implementation supports only
Microsoft Windows XP

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 15



OS-dependent interface

OS-independent analysis can be uncomfortable
(e.g., refer to a process by means of its PT base address)

OS-dependent APIs can ease the analysis
(e.g., refer to a process through its name)

Name Description

GetFuncAddr(n ) Return the address of the function n
GetFuncName(a ) Return the name of the function at address a
GetProcName(p ) Get the name of process with page directory base address p
GetProcPID(p ) Get the PID of process with page directory base address p
GetProcLibs(p ) Enumerate DLLs loaded into process p
GetProcStack(p ) Get the stack base for process p
GetProcHeap(p ) Get the heap base for process p
GetProcList() Enumerate processes
GetDriverList() Enumerate device drivers

Current implementation supports only
Microsoft Windows XP

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 15



HyperDbg: The key advantages

A kernel debugger built on top of our framework

Offers common kernel-debugging features
(e.g., setting breakpoints and watchpoints, single-stepping, . . . )

OS-independent and grants complete transparency to guest OS
and its applications

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 16



HyperDbg: The key advantages

vs

Transparent to the guest OS

(Almost) OS independent

Fault resistant

Debug any component, even critical ones
(e.g., the scheduler, interrupt handlers, . . . )

No need for a second machine (WinDbg)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 16



HyperDbg: The key advantages

vs

Installed as the system runs

Direct interaction with the underlying hardware

No need to deprivilege or modify the guest OS

Software virtualizers are not so transparent. . .

Testing system virtual machines
(ISSTA ’10)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 16



HyperDbg: Graphical User Interface

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 17



HyperDbg: Graphical User Interface

Information about the state of the guest
(also provides OS-dependent details)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 17



HyperDbg: Graphical User Interface

Information about what triggered HyperDbg

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 17



HyperDbg: Graphical User Interface

Output

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 17



HyperDbg: Graphical User Interface

Resolve symbols (OS-Dependent)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 17



HyperDbg: Graphical User Interface

Module name (OS-Dependent)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 17



HyperDbg: Implementation

User interface

We cannot rely on the guest OS graphic libraries

A small VGA driver to interact with the system’s video card

The driver is neither OS nor hardware dependent

User interaction

An user can activate HyperDbg by pressing an hot-key

In non-root mode keystrokes are intercepted by leveraging VT-x
functionalities (i.e., IOOperationPort events)

In root mode a simple driver reads the keystrokes

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 18



HyperDbg: Implementation

User interface

We cannot rely on the guest OS graphic libraries

A small VGA driver to interact with the system’s video card

The driver is neither OS nor hardware dependent

User interaction

An user can activate HyperDbg by pressing an hot-key

In non-root mode keystrokes are intercepted by leveraging VT-x
functionalities (i.e., IOOperationPort events)

In root mode a simple driver reads the keystrokes

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 18



In summary

http://code.google.com/p/hyperdbg/

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 19

http://code.google.com/p/hyperdbg/


In summary

http://code.google.com/p/hyperdbg/

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 19

http://code.google.com/p/hyperdbg/


In summary

http://code.google.com/p/hyperdbg/

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 19

http://code.google.com/p/hyperdbg/


In summary

http://code.google.com/p/hyperdbg/

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 19

http://code.google.com/p/hyperdbg/


In summary

http://code.google.com/p/hyperdbg/

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 19

http://code.google.com/p/hyperdbg/


Dynamic and Transparent Analysis of
Commodity Production Systems

http://code.google.com/p/hyperdbg

Thank you!
Any questions?

Aristide Fattori
aristide@security.dico.unimi.it

http://code.google.com/p/hyperdbg


Backup slides



Watchpoints: Details

Interrupt execution of memory access (read/write)

Implemented by protecting memory pages and trapping access
exceptions

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 22



Watchpoints: Details

Interrupt execution of memory access (read/write)

Implemented by protecting memory pages and trapping access
exceptions

Physical memory

rwx

rwx

rwx

r-x

rwx

r-x

PT Process 1 PT Process 2 PT Process 3

#PF

Monitor any access to a given memory address

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 22



Watchpoints: Details

Interrupt execution of memory access (read/write)

Implemented by protecting memory pages and trapping access
exceptions

Physical memory

rwx

rwx

---

r-x

rwx

r-x

PT Process 1 PT Process 2 PT Process 3

#PF

Remove any permission from the target page

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 22



Watchpoints: Details

Interrupt execution of memory access (read/write)

Implemented by protecting memory pages and trapping access
exceptions

Physical memory

rwx

rwx

---

r-x

rwx

r-x

PT Process 1 PT Process 2 PT Process 3

#PF

Further accesses trigger a CPU exception

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 22



Watchpoints: Details

Interrupt execution of memory access (read/write)

Implemented by protecting memory pages and trapping access
exceptions

Physical memory

rwx

rwx

---

r-x

rwx

r-x

PT Process 1 PT Process 2 PT Process 3

#PF

If the faulty addr. matches a watchpoint, dispatch the event

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 22



Watchpoints: Details

Interrupt execution of memory access (read/write)

Implemented by protecting memory pages and trapping access
exceptions

Physical memory

rwx

rwx

rwx

r-x

rwx

r-x

PT Process 1 PT Process 2 PT Process 3

#PF

Restore the original permissions to resume the execution

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 22



Watchpoints: Details

Interrupt execution of memory access (read/write)

Implemented by protecting memory pages and trapping access
exceptions

Physical memory

rwx

rwx

---

r-x

rwx

r-x

PT Process 1 PT Process 2 PT Process 3

#PF

To hide watchpoints we modify the entry in which the page
table is mapped

(i.e.: we install a Shadow Page Table into the guest operating
system with stricter permission than the original PT)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 22



Late launching

The target system becomes the guest of a virtual machine

The VMCS is configured to reflect the current state of the
guest

When the framework installation is over, the control is returned
to the guest

The CPU restores the guest state from the VMCS
(so that the guest execution is resumed just as nothing
happened)

A. Fattori, R. Paleari, L. Martignoni, M. Monga Dynamic and Transparent Analysis of Commodity Production Systems 23


