
On the Privacy of Real-World Friend-Finder Services

Aristide Fattori† Alessandro Reina†
{aristide,ale}@security.di.unimi.it

†Dept. of Computer Science, Università degli Studi di Milano

Andrea Gerino‡ Sergio Mascetti†‡
{andrea.gerino,sergio.mascetti}@ew-tech.it

‡EveryWare Technologies

Abstract—Privacy protection in the deployment of location
based services is a hot topic both in CS research and in the
development of mobile applications. In this paper we consider a
location based service that currently has hundreds of millions of
users and we show how we developed a software that is able to
discover their exact positions, by only using information publicly
disclosed by the service. Our software does not exploit a specific
limitation of the considered service. Rather this contribution
shows that there is an entire class of services that is subject
to the attack we present.

I. INTRODUCTION

“Friend finders” are popular services that allow a user to
discover, through her mobile device, people that are in the
vicinity. We classify these services into four groups, based on
two main technical dimension. First, some friend finders allow
each user to know the position of other users, for example
showing them on a map. We name these services “explicit
position” friend finders1. In contrast, “implicit position” friend
finders only show location-related information, without pro-
viding users’ precise position2. For instance, these services
only show users closer than a given distance threshold. The
second distinguishing technicality is how users are related to
each other: in “closed buddies” services, a user is informed
about the position (or related information) of other users in
a list of “friends”, that must explicitly and mutually confirm
their willingness to be in such a list. For example, when using
Google Latitude, a user can define the set of other users who
are allowed to see her position on the map. Vice versa, in a
“open buddies” approach, all users are considered as “friends”.
For example, SKOUT provides a user with the distances from
all nearby users.

When using “explicit position” friend finder services, users
are well-aware that their position is being publicly disclosed
to other users of the service. In contrast, a user of a “implicit
position” service would expect her position to be protected
from free disclosure to other users. In some “closed buddies”
services this is actually the case. For example in PCube users
have a fine control over the information they disclose to
their friends [1]. Overall, most of the scientific contributions
addressing this problem consider “closed buddies” services [2],
[3], [4], [5].

In this paper we consider commercial friend finder services
that are “open buddies” and “implicit position”. We show that
these services provide a deceitful form of privacy protection.
Indeed, while a user’s position is not directly transmitted
to other users, it is possible to compute the position by
elaborating the information that the service provider publicly

1Examples are “Find my friend”, and “Google Latitude”.
2Examples are PCube, SKOUT, and Badoo.

discloses to any user. In particular, in this paper we consider
one of the most popular dating services that uses a friend finder
as one of its functionality. The service declares to have more
than a hundred of millions of users in total. Since the attacks
that we describe may endanger the privacy of the users of this
service, we will not report its name but will only refer to it as
“the Service”. This paper has three main contributions.
1) We describe two different attacks to obtain the position of
any user and we give an example of how to perform the attacks
manually, i.e., without any ad-hoc software (see Section II).
2) We show how the attacks can be fully automated, through
the use of an ad-hoc client that can compute, in a few seconds,
the position of any user in a given area (see Section III).
3) We describe how the identification of the position of a user
in a given area can be used as a primitive to develop even
more threatening attacks (see Section IV).

II. ATTACK DESCRIPTION

In this section we first clarify our reference scenario
(Section II-A) and then we describe two attacks that disclose
the precise location of a target user (Sections II-B and II-C).

A. Scenario definition

A source person s is using the Service. Another person t
(target) is using the same service and is located in the vicinity
of s in the sense that t is shown to s as a nearby user. User
s is the adversary, as she aims at obtaining the position of
t with the highest possible precision. To achieve this, s can
collude with one or more buddies c1 . . . cn. In the following,
we denote with s, t and ci both the actors of the scenario
and their positions. We also denote with d(i, j) the distance
between two users.

To perform the attack, s relies on the knowledge derived
by herself and by the colluding buddies from the use of the
service. Also, s can use information about her location and the
location of colluding buddies ci as well as data derived from
this, like d(s, ci).

In this paper we distinguish two attacks. For some target
users, the mobile client of the Service shows the distance of the
target from the source user. The distance value is approximated
to the upper bound of the distance from t, which we denote
with d(s, t). In this case, we use a “known distances” attack
to retrieve the position of t. In other cases the client does not
show the distance of the target from the source user. We call
the attack in this case the “unknown distances” attack.

B. “Known distances” attack

Given the upper bound of the distance d(s, t), s can derive
that t is located in the circle centered in the position of s with



radius d(s, t). Clearly, if s also knows d(c1, t) for a colluding
buddy c1, then it is possible to further restrict the position
of t to the intersection of the two circles (see Figure 1(a)).
This is similar to a trilateration attack [6], with the main
difference that the exact distance is unknown. If there are more
colluding buddies, the position of t can be identified with less
approximation (see Figure 1(b)).

Although the above attack is straightforward from a the-
oretical point of view, a number of issues could arise in its
practical application: errors due to GPS, approximations in
the server-side distance computation, delays in the service
provisioning, and so on. To evaluate the feasibility of this
attack in practice, we kept the target user in a fixed position
and we used several observations from a moving source user s
to simulate a set of colluding buddies. In our experience with
the Service, three observations are sufficient to locate t with a
good approximation. For example, in Figure 1(a) t is located
in an area of less than 0.05km2 while in Figure 1(b) the area
is about 500m2.

(a) Two observation points (b) Three observation points

Fig. 1. “Manual” execution of the “known distances” attack.

C. “Unknown distances” attack

When the distance of the target from the source user
is unknown, it is not possible to directly compute d(s, t).
However, we now show how this value can be derived by
exploiting the fact that the client shows to the user s the list
L of nearby users, ordered according to their distance from s.

In this case, s can discover the approximate distance to t by
colluding with another user c as follows: c starts from s moving
away from this position, while s periodically monitors L as
well as the distance between s and c. As long as c precedes
t in the list of users, s knows that c is closer than t. When c
happens to be after t in L, then d(s, t) < d(s, c). Since d(s, c)
is known, s actually discovers d(s, t). Once the approximated
distance is discovered, the “known distance” attack can be used
to discover the position of t. Note that in this attack we are
implicitly assuming that t is not moving during the time of
the attack. In Section III we show that this assumption is not
necessary while performing the automated attack.

Example 1. At time T = 0, c is located in the same position
as s, hence c is the first element of L (see Figure 2(a)). At
time T = 1, c has moved at a distance of 250m from s, but
still precedes t in L (see Figure 2(b)). At time T = 2, c is
shown in L after t and the distance between c and s is 280m
(see Figure 2(c)). The adversary concludes that the distance

between s and t is between 250m and 280m and hence t is
located in the gray area of Figure 2(d).

III. ATTACK AUTOMATION

The attack we illustrate in Section II is conducted by a
human agent by interacting manually with the Service. Manual
interaction, however, greatly undermine the scalability of the
attack. Even assuming that the human user has the ability to
feed false location information to the Service (i.e., she must
not physically move to different real-world locations during
the attack), manually performing every step needed during the
attack may be cumbersome. For this reason, we investigated
how to automate the attacks to our target service. To achieve
this, we developed a software agent that automatically com-
municates with the service provider, pretending to be a mobile
client in use by a real user.

A. Development of ad-hoc client

To develop an ad-hoc client it is first necessary to figure
out how a real client communicates with its service provider.
To this end, we installed the application on an Android 2.2
system, running inside the Android Emulator [7] and we
configured it to connect to the Service with a user that we had
previously registered. Then, using the Android SDK functions
we “placed” the device in a geographical location and we used
the client to update the location and to retrieve nearby users.
We repeated this operation several times, each time “placing”
the device in a different position. While doing this we captured
the network traffic produced by the device and we analyzed it
to understand the communication protocol.

By observing the network traffic we identified a known,
non-textual, protocol used to efficiently exchange marhsalled
data over a network connection. Since this protocol makes
it possible to define ad-hoc data types, we created a custom
parser to correctly identify different messages. Eventually, we
identified most of the messages and we also realized that, for
some requests, the service provider does not require authen-
tication, making it possible to obtain important information
without registering any user.

After understanding the communication protocol, we de-
veloped a Python application capable of communicating with
the service provider to compute the following primitive:

U = getNearby(lat, lon, δ)

The primitive takes as input a geographical location
〈lat, lon〉 and a distance δ, returning a set U of users reported
by the Service as located at most at distance δ from 〈lat, lon〉.

We observed that the Service does not adopt any security
measure, such as encryption, to protect the network traffic
generated by its users while using the client. Adopting such a
solution, for example by migrating the communication protocol
over HTTPS, would undoubtedly increase the overall security
of the service, for example preventing an external adversary
from sniffing the network traffic. However, note that this is
not a limitation of our attack. Indeed, there are many ways
we could still retrieve the information we need about the
communication protocol. A clever attacker, for example, can
reverse engineer the target application to view the source



(a) T = 0 (b) T = 1 (c) T = 2 (d) Information acquired about t

Fig. 2. Example of “unknown distances” attack.

code responsible for the communication protocol. Otherwise,
if the application or its user fails to properly validate the SSL
certificate, a Man-in-the-Middle [8] attack can be conducted
to trick the application into using a fake certificate, customly
created by the attacker that can, consequently, decrypt HTTPS
traffic. We adopted the latter technique to understand the
communication protocol of two friend finder services.

B. Attack Algorithm

While developing the ad-hoc Python client, we noticed how
data exchanged through the Service’s client and server include
the precise distance between the client’s position and nearby
users. Thus, we customized the getNearby() function to return
such piece of information too.

Fig. 3. Source points chosen by the automated attack.

When precise distances between users are known, the
location of the target can be obtained with trilateration. First,
we use the getNearby() function from a source position s0 to
get the list of nearby users among which we chose the target
t. Since the service provides precise distances, we acquire
the value d(s0, t). We then choose a point s1 on the circle
centered in s0 with radius d(s0, t) (see Figure 3). Again,
we use getNearby() to retrieve d(s1, t). Now, let s2 and s3
be the two intersections between the two circles centered in
s0 and s1 with radius d(s0, t) and d(s1, t), respectively. We
use getNearby() for the third time to compute d(s2, t): if the
result is close to zero, then we conclude that t is close to s2,
otherwise t is close to s3.

This algorithm has the advantage of being simple from a
conceptual point of view and to require a constant number
of executions of the getNearby() primitive; hence, it has a
short execution time (a couple of seconds, in our experiments,
mainly due to network latency). Also, the position of t can be
obtained with high precision. In our experiments, the average
error is in the order of a few meters (always less than 10m).

IV. PRIVACY IMPLICATIONS

As shown is Section III it is possible to automate the
privacy attacks described in Section II to discover the position
of a target user t under the assumption that t is located close
to the source user s. In this section we show how this can be
used to achieve three threatening privacy attacks.

A. “Who is there?” attack

The aim of the “Who is there?” attack is to understand who
resides in a given location. Intuitively this attack is particularly
threatening when the presence in the chosen location discloses
personal data about the user. For example if the adversary
chooses a place of worship as target location she can infer,
with a certain likelihood, the religious belief of the people
at that location. Repeating the observation and checking who
is present in that location several times can increase the
probability of a correct guess. Technically, the attack can be
simply performed by positioning s at the target location and
retrieving the users that are closer than a given threshold
distance with the getNearby() primitive.

B. “Where is Alice?” attack

Let us consider an adversary that wants to stalk a target user
t. Since the approximate position of t is unknown, we cannot
directly use the automated attacks presented in Section III
because we do not know where to place s0. In practice, we
first need to find a position s0 such that t is “near-by”. Then,
we can use the attacks shown in Section III.

To find the position of s0, we iteratively use the getN-
earby() primitive to “search” for t. In theory, this can be
achieved by starting from a given random position and retriev-
ing the nearby users. If t is not in the result, the adversary can
chose a new random source position retrieving nearby users to
that point. Eventually the location of the target user is found.
Clearly, several optimizations are possible. in area where t has
already been searched.

In practice, such an attack requires to issue a large number
of requests and to retrieve a number of users linear in the total
number of users of the service. In our automated attack, we
observed that it is possible to retrieve from the service provider
about 250 users per second. This means that searching t in
a million of users takes about one hour. If the service has
hundreds of millions of users this attack is impractical, unless
we have some clues about t like profile information (that can
be used as filters) or the region where t is likely to be located.
For example, considering only female users aged between 20



and 25 years, we have been able to retrieve users in an area
of 13km centered in Milan in about half a second.

C. “Follow Alice” attack

By periodically repeating the “Where is Alice?” attack and
storing the results it is possible, after some time, to identify
the set of places visited by a target user t. From this “trace”,
the attacker can discover t’s home address and workplace and
potentially spot t’s real identity.

Clearly the “trace” of places visited by t contains only the
locations sent to the service providers by t’s client. Most of the
services currently available (including the Service) use clients
that send location updates in response to user-initiated actions
like log-ins, searches for nearby users or explicit requests.
However, some clients allow the user to enable automatic loca-
tion updates hence periodically sending the user’s location to
the service provider, in some cases even when the application
is in background. This is a more threatening situation, since a
user can be unaware of being disclosing her position.

V. ETHICAL CONSIDERATIONS

Our purpose in this work is to demonstrate how an attacker
can leverage publicly available information provided by a
commercial friend finder service in order to precisely infer the
position of an arbitrary and unaware user. In our attack we do
not violate or hack any system. Actually, our objective is not
to show security vulnerabilities in the considered services, but
rather to show that it is possible to create an application that
pretends to be a client and use it to automate privacy attacks.
More specifically, our privacy attack is performed according
to the following principles.
1) The attacker does not anyhow compromise the servers of the
service provider or retrieve otherwise unavailable information.
2) The attacker does not interact with her target of choice (e.g.,
tricking him to visit a specially crafted web page).
3) Every information that the attacker uses to infer the position
of her target(s) is available either to registered or unregistered
users of the service.
This being said, when performing the experiments that are
required to proof the soundness of our work, the privacy of
real users of the Service must be taken into high consideration.
To this end, during our analyses, we targeted only users under
our direct control and users of whom we had previously got
an explicit authorization.

VI. CONCLUSIONS

In this contribution we have shown that users participating
in a “open-buddy” friend finder expose their locations to the
public, even if this information is not explicitly given to other
users. Indeed, we showed that, after creating an ad-hoc client,
it is relatively easy to use public information to spot a user’s
positions and even to follow a target. While we have developed
our ad-hoc client for a desktop computer, it would be possible
to run similar code on a mobile device, enabling accessible
“on the move” attacks.

The defense against the attack we presented is non triv-
ial. Technically, this is due to the fact that in an “open-
buddies” friend finder some location-related information need
to be disclosed to the public and the malicious use of this

information can easily lead to discover the actual position
of the target user. So far, we did not devise any security-
related solution to prevent the adversary from learning the
communication protocol and actually we have been able to
understand and replicate all the protocols of the many service
that we investigated. Probably a partial solution to the problem
would consist in rendering the attacks more complicated by
identifying the attack patterns (e.g., series of requests) and
blocking them. However this can hardly be a general solution
to the problem.

Similarly, we have not been able to identify any data-
management solution to prevent these attacks. One approach
that partially enhances users’ privacy is to disclose only ap-
proximate position (like the ZIP code, for example). Some ser-
vices actually implement this solution. While this information
is intuitively less sensible than the exact location, disclosing it
still causes some privacy issues. Another limit of this solution
is that it trades-off privacy for computed distance precision,
causing a decrease in the quality of the service.

We have one last consideration about the users’ perception
of the above problems. We created and published a non-
technical video to briefly present the above results to end-
users3. The video was seen by less than 400 persons. We
identified two reasons for this unsatisfying result. First, despite
our effort, we had not been able to advertise the video to
the correct audience or to make it sufficiently clear. Second,
we collected comments showing that apparently people do not
have the perception of how much their privacy in endangered
by automated attacks. While this is not a strictly technical
problem (rather it is a sociological one) we argue that it
should be taken into account while devising privacy-preserving
solutions.

ACKNOWLEDGMENTS

This work was partially supported by Italian MIUR under
grant FIRB RBFR081L58 002.

REFERENCES

[1] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia, “Privacy
in geo-social networks: proximity notification with untrusted service
providers and curious buddies,” The VLDB Journal, vol. 20, no. 4, 2011.

[2] G. Zhong, I. Goldberg, and U. Hengartner, “Louis, Lester and Pierre:
Three protocols for location privacy,” in Privacy Enhancing Technologies,
vol. LNCS 4776. Springer, 2007, pp. 62–76.

[3] L. Šikšnys, J. R. Thomsen, S. Šaltenis, M. L. Yiu, and O. Andersen, “A
location privacy aware friend locator,” in Proc. of the 11th Int. Symposium
on Spatial and Temporal Databases, ser. LNCS. Springer, 2009.

[4] L. Šikšnys, J. R. Thomsen, S. Šaltenis, and M. L. Yiu, “Private and
flexible proximity detection in mobile social networks,” in Proc. of the
11th Int. Conf. on Mobile Data Management. IEEE Comp. Soc., 2010.

[5] S. Mascetti, C. Bettini, and D. Freni, “Longitude: Centralized privacy-
preserving computation of users’ proximity,” in Proc. of 6th VLDB
workshop on Secure Data Management, ser. LNCS. Springer, 2009.

[6] H. L. Groginsky, “Position estimation using only multiple simultaneous
range measurements,” Aeronautical and Navigational Electronics, IRE
Transactions on, vol. ANE-6, no. 3, pp. 178 –187, sept. 1959.

[7] “Android SDK,” http://developer.android.com/sdk/index.html.
[8] A. Ornaghi and M. Valleri, “Man in the middle attacks,” in Blackhat

Conference Europe, 2003.

3http://watchyourstep.everywaretechnologies.com/


